
DSMC PRESS @
TECHNICAL REPORT, TR 4-94

DEFENSE SYSTEMS MANAGEMENT COLLEGE
FORT BELVOIR, VIRGINIA

AD-A285 759lUiii lill l~iii II 11\11111IlI II

AN ABSTRACT MODEL
OF

ROGUE CODE INSERTION
INTO

RADIO FREQUENCY
WIRELESS NETWORKS

THE EFFECTS OF
COMPUTER VIRUSES

ON THE
PROGRAM MANAGEMENT OFICE

DIJTR•U N SP•TF.,'iN A

Appro'%ed k I-Y

LTC CHRISTOPHER V. FEUDO
PROFESSOR OF ENGINEERING, DSMC

A Dissertation
- Presented to the
miff TFaculty of
M• The School of Engineering and_I S Computer Science

P The George Washington University

APRIL 1994
94 10 25

PRUIACE

This research examines the effects of computer viruses' to the

PNO. Computer viruses continue to be a real threat to all

computing systems, to include traditional and wireless based

networks. We will examine ways of mitigating this new threat.

Trends in increased computer, operating system, and network

standardization, as well as increased use of distributed

systems, and computer connectivity enhance this viability of

attacking targeted hosts via radio frequency.

hardware acquisition managers, like software acquisition

managers (Dobbins, 1994)1, must follow basic rules. Program

managers must recognize that both hardware and software

issues, just as software issues alone, can kill them.

The rapidly growing popularity of wireless LANs is

proliferating intruders' opportunities to infect computing

systems via radio frequency (RFI). Telecommunication hardware

and software components, each component's specifications, and

the technology to inject computer viruses via RF communication

channels are proven and readily available. Unauthorized users

can purchase "telecommunications saturday night specials" at

"Defined as a "rogue program" throughout the dissertation
to denote any type of malicious code, such as logic and time
bombs, worms, and trojan horses

i

many electronics outlets to insert surreptitious code into RF

communication channels.

The implications for the PHO are mind-boggling - aircrafts,

weapon systems, "smart" bomb technology, and C3 face an

additional insidious threat, which may gravely affect the

security of the United SIates.

'JOT

A, _t -

ii

ABSTRACT

This dissertation demonstrates that inadequately protected

wireless LANs are more vulnerable to rogue program attack than

traditional LANs. Wireless LANs not only run the same risks

as traditional LANs, but they also run additional risks

associated with an open transmission medium. Intruders can

scan radio waves and, given enough time and resources,

intercept, analyze, decipher, and reinsert data into the

transmission medium.

This dissertation describes the development and instantiation

of an abstract model of the rogue code insertion process into

a DOS-based wireless communications system using Radio

Frequency (RF) atmospheric signal transmission. The model is

general enough to be applied to widely used target

environments such as UNIX, Macintosh and DOS operating

systems. The methodology and three modules, the prober,

activator, and trigger modules, to generate rogue code and

insert it into a wireless LAN were developed to illustrate the

efficacy of the model.

Also incorporated into the model are defense measures against

remotely introduced rogue programs and a cost-benefit analysis

that determined that such defenses for a specific environment

were cost-justified.

iv

TABLE OF CONTENTS

Chapter 1 INTRODUCTION T 1
1.1 Related Work. 2

1.1.1 Intrusion Detection Systems (IDSS) . 3
1.1.2 Cost-Benefit Analysis 11

1.2 Summary of the Contribution 12

1.3 Organization of the Dissertation 13

Chapter 2 BACKGROUND 15
2.1 Rogue Programs Capabilities 15

2.1.1 Rogue Program Infiltration 16
2.1.2 How Rogue Programs Work 17
2.1.3 Rogue Program's Structure.... . . . 17
2.1.4 Rogue Program Attack Mechanisms . . . 20

2.2 Computer Networks 28
2.2.1 Network Access 28
2.2.2 Network System Processing and

Vulnerabilities 29

2.3 Use of Wireless LANs 31
2.3.1 The ALOHANET 34
2.3.2 Captain Nidnight Escapades 36

2.4 Trends That Increase The Feasibility of
Inserting Rogue Code Remotely 36
2.4.1 Operating Systems and Computer

Standardization 37
2.4.2 Distributed Systems Standardization . 40
2.4.3 Enhanced Computer Connectivity . . . 43

2.5 Summary 43

Chapter 3 REMOTELY INSERTING ROGUE CODE INTO A WIRELESS
LAN USING RADIO FREQUENCY 45
3.1 Introduction 45

3.2 Background .n. 46

3.3 Attack Goals • • . 46
3.3.1 Motivation to Deveiop an'Abstract

Model 46
3.3.2 Attack Method.49
3.3.3 Verifying the Success af Rogue Code

Execution 51

v

3.4 An Abstract Model - Overview 52
3.4.1 Parameters and Requirements 53

3.4.1.1 Communications Channel 54
3.4.1.2 Data Stream Conformation 57

3.4.1.2.1 Transmission Frequency 57
3.4.1.2.2 Synchronized

V Communication. 58
3.4.1.2.3 Coding Characteristics * 58

3.4.1.3 Code Generation 59
3.4.1.4 Required Resources 64

3.4.2 Defense Measures............ 69
3.4.2.1 CRCs 70
3.4.2.2 Checksums. 70
3.4.2.3 Encryption............. . . . 71
3.4.2.4 Digital Signatures 72
3.4.2.5 Safeguards Incorporated in

Commercial Wireless LAN Software 73
3.4.2.6 Software and Hardware

Mechanisms 76
3.4.2.7 Defense Mechanisms Combinations . 77

3.4.3 Cost-Benefit Analysis 77
3.4.3.1 Access Vulnerability Likelihood

(VL) . 79
3.4.3.2 Yearly Cost of'S;fe'uard; (YCSG) 82
3.4.3.3 Basic and Recurring Costs ... 83

3.5 Summary 86

Chapter 4 MODEL INSTANTIATION. 87

4.1 Introduation 87

4.2 Background 88

4.3 Parameters and Requirements 89
4.3.1 Communications Channel 89

4.3.1.1 Connectionless-mode Network
Protocol (CLNP) 90

4.3.1.2 The Trivial File Transfer
Protocol (TFTP) 90

4.3.2 Data Stream Conformation 91
4.3.2.1 CLNP Data Stream. 91
4.3.2.2 TTP Data Stream 93

S4•3.23.3 Coding Characteristics and
Synchronization 95

4.3.2.4 Transm5.ssion Frequency 97
4.3.3 Experiment Resources 97
4.3.4 Code Generation* 102

4.3.4.1 Initializing Hosts to Transfer
Files 102

4.3.4.1.1 Set Hostname 103

vi

4.3.4.1.2 Assign Packet Drivers . . 103
4.3.4.1.3 Initialize CLNP Network

Layer Software 104
4.3.4.1.4 Initialize TFTP Software 104

4.3.4.2 Executing a Normal File Transfer. 105
4.3.4.3 Insertinq Rogue Code During

a File ",ransfer 109
4.3.4.4 Experiment Summary0. 114

4.4 Defense Measures 115

4.5 Cost-Benefit Analysis116
4.5.1 Access Vulnerability Likelihood (VL) 116
4.5.2 Yearly Cost of Safeguards 121
4.5.3 Basic and Recurring Costs 123

4.6 Attack Methodology Variations 127

4.7 Conclusions 128

Chapter 5 CONTRIBUTIONS, CONCLUSIONS AND IMPLICATIOPS
FOR FUTURE RESEARCH 131
5.1 Contributions 131

5.2 Conclusions 133

5.3 niture Work 135

APPENDIX 1 - INITIALIZATION CODE 137

APPENDIX 2 - ROGUE PROGRAN CODE 138

ENDHOTES 139

vii

LISTING OF FIGURES

Figure 1. Overwriting .COX File Infector 20

Figure 2. Non-Overwriting .COM File Infector. 21

Figure 3. Vulnerabilities of Operating Systems 32

Figure 4. Schematic of the ALOHANET 35

Figure 5. Susceptibility of Operating Systems. 38

Figure 6. Conceptual Model47

Figura 7. Attack Time Line 50

Figure S. Abstract Model 53

Figure 9. OSI Message Transmission Format 55

Figure 10. OSI Layer Vulnerabilities.56

Figure 11. Prober Module......... 60

Figure 12. Activator Module 62

Figure 13. Trigger Module 63

Figure 14. Insertion Module. 64

Figure 15. Hardware Resources. 66

Figure 16. Computer Hardware/Radio Interface
System (CHRIS) 67

Figure 17. Example Configuration 68

Figure 18. Comparison of Wireless LANs Defensive
Mechanism 75

Figure 19. Accessibility Vulnerability likelihood

Components 79

Figure 20. Accessibility Factors. 81

Figure 21. Data Protocol Data Unit (PDU) Structure . . . 92

Figure 22. Hardware System Overview 98

viii

Figure 23. LAWN Specifications100

Figure 24. LAWN Schematic 101

Figure 25. Host Aaron Sends Message to Host Bill 108

Figure 26. Host Bill Acknowledges Host Aaron's Message . .108

Figure 27. Host Intruder's Packet Reaches
Host Bill First. 110

Figure 28. Host Bill Acknowledges Host Intruder's
Packet to Host Aaron....... 110

Figure 29. Example Subsystem 116

Figure 30. Computing Systems
Vulnerability Likelihood 119

ix

Chapter 1 ZITRODUCTION

Rogue programs 2 , including viruses, worms, and trojan horses,

have existed for some time3 . Writers have devoted

periodicals', security journals , newspapers, and entire

books7 to rogue programs. Rogue programs continue to attack

"computer systensO as well as local area networks (LA119) .

Rogue programs will continue to thrive as long as operating

systems" vulnerabilities exist and LANs are proliferating.

Currently, there are over 4000 rogue programs' and 93.2% of

all installed PCs are expected to be networked. Also,

wireless LANs, which were first introduced in 1985" , show

promise. The wireless LAN market generated about $3 million

in 1990, some $10 million in 1991, and $40 million in 1992.

Forecasts for 1997 range from over $200 million to nearly $i

billion'.

This dissertation shows that inadequately protected wireless

LANs are more vulnerable to rogue programs attack than

traditional LANs because wireless LANs have not only the same

risks as traditional LANs but also have the risks associated

with open transmission mediums (radio waves). People who want

to insert rogue programs into wireless LANs can scan radio

waves and intercept, analyze, decipher, and reinsert data into

1

the transmission medium.

An abstract model of the rogue code insertion process

demonstrates this claim. The abstract model is general and

applies to widely used target environments such as the UNIX,

Macintosh and DOS operating systems. The model is

instantiated on a DOS-based system that uses radio frequency

(RF) and employs a Local Area Wireless Network (LAWN) product.

The insertion is received undetected, without errors and later

executed surreptitiously by the targeted host.

1.1 Related Work

Although there are numerous articles on wireless LANs, only

one by Lathrop discusses their vulnerabilities'. Lathrop's

paper provides an overview of wireless LANs and concludes that

wireless LANs face not only all of the risks associated with

traditional cable-based LANs but also the additional risk that

an open transmission medium imposes.

This dissertation is the first to develop an abstract model of

the rogue code insertion process into a targeted network and

then instantiates it on a personal computer system. This

abstract model has three components: parameters and

2

requirements definitions, defensive measures and a cost-

benefit analysis.

The required parameters and requiremants definition component

of the abstract model is analogous to the method used by the

Internet worm to attack hosts. Whereas the Internet worm

consisted of two parts, a main program and a bootstrap

program, the abstract model uses three modules (prober,

activator and trigger modules) for basically the same purpose.

See citations' for a detailed discussion of the Internet

worm.

1.1.1 Intrusion Detection Systems (IDGS)

Defensive measures and the access vulnerability likelihood

(VL) of the cost-benefit analysis of the abstract model are

similar to intrusion detection systems (IDSS). IDSS monitor

access control; the VL is used to perform a quantitative

analysis. For example, IDSS monitor user activity

continuously to detect any ouspicious activity as it occurs'

by comparing a user's current behavior to his/her historical

behavior. The VL is used to compute how the rogue code

infiltrates the computer system. Accessibility issues include

3

topological, vector and functional factors. Both are used to

prevent unauthorized access; one prevents breaking in; the

other (VL) provides the likelihood of breaking in. They are

both computer-based security measures. There are currently

nine intrusion detection systems in use .

1. Multics Intrusion Detection and Alerting System

(MIDAS)

2. Intrusion Detection Expert System (IDES)

3. ComputerWatch Audit Reduction Tool

4. Haystack

5. Information Security Officer's Assistant (ISOA)

6. Network Anomaly Detection and Intrusion Reporter

(NADIR)

7. Network Security Monitor (NSM)

a. W&S

9. Distributed Intrusion Detection System (DIDS)

The Multics intrusion Detection and Alerting System (MIDAS) 2

was developed by the National Computer Security Center to

monitor the government Multics system; it has been operational

since 1988 and it encodes "a priori" heuzistic rules that

define an intrusion. Midas' rules attempt to detect all

penetrations including rogue program infection and misuse.

4

MIDAS accomplishes this detection by using four types of

heuristic rules:

1. Rule I deals with current behavior to detect those

actions which in themselves (e.g., in isolation) may

appear suspicious.

2. Rule 2 uses statistical user profiles to detect any

action which deviates from the user's observed recorded

past behavior. These profiles list the operator's

commonly used commands, typing speed, normal access

times, and location.

3. Rule 3 contains a global system profile, which

characterizes the normal use of the system. For

example, excessive use of the copy command would

indicate suspicious activity.

4. Rule 4 sequences commands which characterize known

',r pestulated rogue program attacks. Hence, such

attacks can be detected prior to causing any damage.

Currently, MIDAS monitors the use of Dockmaster. Note that

although MIDAS is implemented on the Multics system, with some

modifications and changing of rules (depending on the system

used), it can supposedly be adapted to any system.

5

The Xntrusion Detection Uzpert systen (XDW) 2 , being developed

at SRI's Computer Science Laboratory since 1985, uses

statistical algorithms to observe user behavior to detect any

anomaly from the accepted documented normal profile. IDES

adaptively learns what is normal for both individual users and

overall system behavior. It also uses an expert system that

encodes known intrusion scenarios, known system

vulnerabilities, and other violations of a system's designed

security policy. IDES discerns suripicious activity via a rule

base. IDES has been completely redesigned to accomplish its

intended objectives. It is modular, extensible, capable of

monitoring both heterogeneous and homogenous target machines,

and providing protection in a real-time mode. SRI is in the

process of enhancing its current IDES prototype, implemented

in 1988 to provide a device which will become a tamper-

resistant, fault-tolerant, extensible, parallel, and

distributed prototype version. This new version will

supposedly be more robust, reliable and powerful than the

current version. There are currently three versions of IDES:

1. The basic IDES system, which detects any anomalous

system activity based on user profiles;

2. The Sun-IDES, which monitors UNIX and uses the C2 Sun

Unix Audit Trail; currently in use at SRI as a research

prototype

6

3. FOINS-IDZS, which monitors database use on an IBM

mainframe. The FBI has adopted FOINS-IDES.

IDES endeavors to detect rogue program penetrations and misuse

are based on the premise that any exploitation attempts will

involve abnormal use of the system. Hence, SRI has

accentuated the statistical user profiles and statistical

analysis of user activities based on those profiles.

The ComputerWatch Audit Reduction Tool 2 , available since

September 1989, was developed by AT&T Bell Laboratories. This

tool summarizes audit trails and highlights anomalous behavior

via detection rules. It is used on a BI version of the UNIX

system V/MLS operating system and detects attempted break-in,

masquerading, many types of mistakes by legitimate users, many

types of denial-of-service ventures and rogue program

penetrations. It can also detect attacks involving more than

one person.

Naystack 2 , developed by Los Alamos National Laboratory, is

designed to assist system security officers to detect and

investigate any type of exploitation via anomalous events,

security improprieties, and summarizing the system's audit

trails of user behavior. Haystack is considered cost-

"7

effective because it uses Zenith Z-248 and Desktop III PC's.

It attempts to detect break-ins, masquerading, any type of

operating system penetration, denial-of-service, and various

forms of malicious use.

The Information security Officer's Assistant (IBOA) 2 was

developed by Planning Research Corporation (PRC). It is a

functional real-time application prototype which uses a set of

statistical tools, an expert system, and a hierarchical set to

perform automated auditing and network monitoring. ISOA

compares the incoming audit data with a set of expected

events. It attempts to detect break-ins, masquerading, and

many types of wrongdoing by legitimate users; PRC is in the

process of including denial-of-service and rogue program

penetration detection. The ISOA is currently used with UNIX

Sun operating system C2, and the IBM AT XENIX.

The Network Anomaly Detection and Intrusion Reporter (NADIR) 2 ,

operational since August 1989, was developed by Los Alamos

National Laboratory (LANL). It aids security managers to

detect computer abuse and penetration and attempts to detect

break-ins, denial-of-service, many types of automated attacks,

and many kirds of legitimate users' abuses. NADIR is

specifically designed for use at LANL.

8

The network Security monitor (NIX) 2 , developed by University

of California, Davis, is a research project to detect many

types of misuse of hosts connected by a LAN. The NSM

prototype is currently running on a Sun 3/50. The target

system is the Ethernet and all the hosts connected to it. NSM

will intercept all message traffic, regardless of its

destination, for examination. Experimentation on a live LAN

is anticipated, as well as broadening NSH application to WANs

and other platforms.

W&S3 , developed by LANL, is a computer security anomaly

detection system. Its inception dates to November 1984.

There are currently two versions of W&S in use at the

Department of Energy (DOE) and at the National Computer

Security Center (NCSC). A third version is in experimental

use at LANL. W&S detects anomalies by identifying usage

patterns that differ from historical norms and compares

current system activity audit records to rules describing past

behavior patterns. W&S is especially effective in detecting

rogue program penetrations. It also detects other security

breach attempts similar to the methods used by the

aforementioned systems.

9

L •I'• IIIV

The Distributed zitrusion DeteCtion System (DXDS) 3 , developed

by Lawrence Livermore National Laboratory with participation

by the University of California, Davis, and Haystack

Laboratories in Austin, Texas, differs from the other IDSSs in

that it examines activity on all directly "monitored" hosts on

the network while simultaneously examining network activity

itself. It has been in Beta testing since July 1992. DIDS

has four major components:

1. The host monitor, which resides on each host computer

on the network, continuously monitors user activity by

comparing that activity with user profiles or particular

"signatures" of intrusive behavior, such as reading or

writing files.

2. The network monitor provides similar functions as the

host monitor on the network.

3. The DIDS director and its expert system (ES) examines

the anomalous behavior or suspicious signatures for

legitimacy. The DIDS director notifies the user of any

unauthorized intrusions.

4. A user interface displays the network's security

state, including the level of suspicious activity

inferred by the DIDS director.

10

1.2.2 Cost-Benefit analysis

The rationale of cost-benefit analysis is that when

considering a proposed technology, the costs and benefits to

be expected frou Its implementation should be assessed; and

then the technology or improving it is adopted only if the

anticipated benefits outweigh the anticipated costs. The

implementation of this analysis will vary in accordance with

stated assumptions' . There are a number of cost analysis

methodologies available 3 .

Safeguards cost in the cost-benefit analysis of the abstract

model was adapted from formulas that Fred Cohen3 devised to

describe the total costs per year of rogue program defenses.

Cohen evaluated the costs of today's widely used defenses such

as scanners 3 , monitors , cryptographic checksums and

integrity shells3 . His 20 costs elements were reorganized and

condensed into 7 elements and 5 sub-elements to satisfy the

requirements of this dissertation.

Some recurring costs were incorporated from Linda Rutledge's

paper 3 to determine communication costs. She proposed a new

mathod for secure transmission, called the Reference Matrix,

which provides a technique for encoding a message over public

switched networks using a spatial transformation. The re-

11

curring costs in her cost comparison of the Reference Matrix

and other security methods were used to determine the commun-

ication costs in the Cost-benef it component of the abstract

model. Cost-benefit analysis techniques are based on

traditional cost-benefit analysis approaches".

1.2 Summary of the Contribution

This dissertation makes three major contributions.

1. Demonstrates the problem: By successfully inserting

rogue code into a wireless network, this dissertation

demonstrates that inadequately protected wireless LANs

are more vulnerable to rogue program insertio3n than

traditional LAUs.

2. Models a solution and illustrates the instzntiation of

the solution: This dissertation presents an abstract

model that models the process whereby someone uses RF to

insert a rogue code into a targeted host's communication

data stream. The abstract model is then instantiated

into a DOS-based wireless communications system using RF.

3. Provides cost-benefit analysis: This dissertation

analyzes the cost of safeguarding the wireless LAN or

leaving it unprotected and concludes that (for specific

measures) it is cost-effective to implement controls to

protect the LAN.

12

1.3 organinition of the DmSmertati*o

The remainder cf the dissertation is divided into four

chapters. Chapter 2 builds on previous research related to

rogue program characteristics, computer networks and their

vulnerabilities, wireless IANs, and the trends that increase

the feasibility of remotely inserting rogue code via RF.

Chapter 3 develops an abstract model that shows how the

rogue code is inserted into a targeted host using a RF

communication channel. The chapter discusses the reasons

why the abstract model is developed, how to process and

verify the model's instantiated attack mechanisms, and the

components that comprise the model: the parameters and

requirements necessary to apply it to widely used

environments; defensive measures and the cost-benefit

analysis that determines when such measures are cost

effective.

Chapter 4 instantiates the model on a DOS-based system using

a Local Area Wireless Network (LAWN) connection to insert a

rogue program via RF into a targeted host on a wireless LAN.

13

I I I I

Tha last chapter concludes that insufficiently safeguarded

wireless LANs are more vulnerable to a rogue program attack

than traditional LANs. This chapter also concludes that the

abstract model developed in chapter 3 can be instantiated, as

chapter 4 demonstrated and suggests the advisability of

conducting research to protect related systems such as

cellular phone penetration vulnerabilities, automatic teller

penetration techniques, short wave vulnerabilities, electronic

warfare, and satellite manipulation applications.

14

Chapter 2 BCKGROUND

Chapter 2 provides background material to help the reader

understand chapters three through five. This chapter has five

sections: section 2.1 delineates the rogue program

characteristics; section 2.2 discusses computer networks and

their vulnerabilities; section 2.3 discusses and describes

wireless LANs; section 2.4 describes trends that increase the

feasibility of inserting rogue code remotely, and section 2.5

summarizes the chapter.

2.1 Rogue Program Capabilities

A rogue program must gekierally have three essential

capabilities to infect programs or entire systems effectively.

First, because infecting a single file may be inconsequential

to some users, the rogue program may be able to replicate

itself to multiple files. Second, the program must execute

its code to spread the infection. This contamination may be

accomplished by either executing an infected program or

executing the rogue program code via the operating system's

resources such as booting up. Third, the rogue program code

may carry a payload to effect whatever task for which the

rogue program code was designed. In many cases, rogue

programs modify a bonafide program to satisfy the above

15

capabilities. Sections 2.1.1 to 2.1.4 describe how rogue

programs infiltrate hosts, how they work, what they look like,

and how they attack.

2.1.1 Rogue Program Infiltration

There are many ways in which an intruder can infect a

standalone computer or a network node with a rogue program.

Anytime a program is not written by the user himself (or is

written by the user but has bugs), and is executed, there is

the possibility of it being malicious. When a user gives

another user or another machine access to his system, he* is

risking infection. computer aystems are infected via an

infected disk which is physically placed into the systen, or

via a remote transfer mechanism, such as electronic mail. The

initial infection of a system can occur by:

1. booting a machine with an infected disk

2. copying arid/or executing infected software, which

may be loaded from diskettes, obtained over a

network connection, or via modem on other input

methods, such as tape.

S"he" generically denotes a mle or a female user

16

2.1.2 now Rogue Prog.ams Work

For this section and the rest of this dissertation, unless

stated otherwise, the IBM platform is the computing system.

When an infected program is loaded and executed in the main

memory of the computer system, it can infect other executable

programs such as CON, EXE, SYS and OVL files. While

executing, the rogue program surreptitiously directs the

operating system to append or insert a copy of the rogue code

into other programs. Then, when the newly infected program is

itself loaded and axecuted, the rogue code takes control and

performs its preprogrammed functions, which generally include

self-propagation as well as performing mischievous or

destructive manipulations. Depending on the specific type of

rogua program, the rogue code may:

1. Remain in main memory

2. Hide in secondary memory such as a hard or floppy

disk, etc. Likely hiding spots include executables,

the boot sector, root directory, bad sectors, and the

partition table.

2.1.3 The Rogue Program's Struature

The one common characteristic of all rogue programs is that

they modify or insert an entity such as a program, data, or

operating system into a targeted host. This section has a

17

rogue program's modular stiucture as modified from citation4

which is valid for all rogue programs, except for worms:

Infector Carrier j Mover Status

The above design and ordering of components are used for

convenience. In practice, a rogue program may neither be

modularly structured nor arranged in any specific order. What

is important are the following functional components.

1. The infector component is the rogue program kernel

which contains the rogue code. This component contains

all the routines and functions to target and attack

potential victims, to trigger how much damage to inflict,

to identify propagation avenues, and to evade capture/de-

tection.

2. The c component is optional; it is simply a

normal program within which the rogue program code has

been planted. It is useful, however, because it provides

the rogue program with a vehicle to propagate to other

programs.

3. The mover component is also optional. It moves

data which the rogue program has replaced so that the

program may still execute normally. The mover component

is used with nonoverwriting rogue programs, which will be

discussed in section 2.1.4.

18

4. The status component is also optional and contains a

status flag that prevents multiple reinfections. The

status flag, which can be a single bit, indicates whether

the program has already been infected and stops multiple

infections of a single file. The status component will

not reinfect an already infected file because

reinfections increase the file size making the rogue

program susceptible to detection.

For the above structure to be viable, the rogue program must

have read and write privileges as well as a means to determine

which programs are present. The operating system already

contains the required mechanisms for the rogue program to

accomplish its purpose. For example, all operating systems

provide basic functions such as the COPY, ERASE, TYPE, DIR,

PRINT, ATTRIBUTE and PROMPT commands to manage files and

programs. Moreover, on DOS systems, all users can have access

to the Basic Input Output System (BIOS) and DOS services via

software interrupts'.

19

2.1.4 Rogue Program Attack Mechanisms

Rogue programs are either overwriting or nonoverwriting rogue

programs.

Overwriting rogue programs write over the host program's code,

destroying all or part of it (Figure 1). The host program may

not properly execute after infection.

I 3gh a l .COM File

E I

LT1EInle:]vCat w ~

20

Nonoverwriting rogue programs substitute the host program's

code with their own. In this case, the host program's code

can be partially or wholly relocated (Figure 2), and the host

program should continue to function properly.

LEp I0IOcamowe

[~T

Figure 2. Nonovezvriting .COx Pile
Infeotor

Although overwriting rogue programs are destructive, they are

perhaps the easiest to design and detect"3 . These rogue

programs generally overwrite a number of bytes of an

executable file so that users cannot recover the file. Since

the rogue program overwrites a portion of the host program,

the mover component is not required. The following sequence

21

of diagrams illustrate the operational aspects of such a rogue

program"".

First, assuming that a program (care) is already infected,

the diagram below displays the infected program and two other

programs which are not yet infected:

Rogue Program Code:

Carrier Status

Inetor] ------I-----

UDinfected User Program 1:

User Program 1

Uninfected User Proaram 2:

User Program 2

When the infected program is executed, the infecto component

attempts to infect anot'her program. Once it locates an

executable program, in this case, User Program 1, it checks

the s component, to determine if it is already infected.

If the flag indicates that it is not infected, then User

Program 1 is targeted for infection and the rogue code

overwrites the initial bytes in User Program 1. The files now

appear as:

22

RBgue Prarai Code.:

Inetor car ier satu

Infected User Procram 1:

Infector Remainder of Program 1 StatusD

Uninfected User Proaram 2:

FI= User Program 2

At the conclusion of the infection process, the infetr

component may trigger a damaging function. Execution then

returns to the gjje program so that the program looks

normal to users and they will remain unaware of the intrusion.

The infection of User Program 2 follows the same sequence;

therefore, its infected structure looks like Infected User

Program l's structure:

Rogue Proaram Code:

I!nfctorl Carrier Ii Status

Infected User Proaram 1:

Infector Remainder of Program 1 Status

23

Infected User Proaram 2:

Infector Remainder of Program 2 Status;

Such an infected program will probably malfunction because the

rogue program has overwritten some of its code. The 405

virus, which affects CON files is an example of such a rogue

program's. The virus overwrites the first 405 bytes of the

victim file, and if the victim file is shorter than 405 bytes,

the virus increases the file to 405 bytes.

Nonoverwriting rogue programs are the most common". The

terminology, however, is deceiving. Although its title

implies nondestructive behavior, this type of rogue program

can be more destructive than damaging overwriting programs

because the overwriting programs generally cause errors

immediately with infected executables, and nonoverwriting

programs can be present and active within a system for long

periods of time without being detected. Nonoverwriting rogue

programs have a design similar to their overwriting

counterparts; their structure differs only by the g~gr

component, which is the mechanism by which the rogue code is

copied to the victim file. This type of rogue program adds

code to the host program either by increasing the file's size

or by exploiting unused space.

24

An intruder has many techniques to insert a nonoverwriting

rogue code into a host program. Assuming that a program

(garrier) is already infected, one such technique operates as

follows:

Roque Prooram Code:

In carrier mover Status

Uninfected User Proaram 1:

User Program I

If a mau program is infected, the infector component

attempts to infect User Program 1. It first checks the

-- u component to determine if it. is already infected. If

A the flag is not present, the infector component targets User

Program 1 by selecting an area at the very beginning of the

program which is the same length as the rogue code as

illustrated below:

UserProgram I ~
.. X •6Cf-* t , --)I I

Here, the rogue-code-length is the sum of the lengths of the

o, mover and status components. The rogue program then

25

activates the mg•mr component to append that specific rogue-

code-length area to the end of the program, thereby preserving

the original portion of the User Program l's code. The mover

component then appends itself to the end of the user program.

User Program 1 User _overf
I I I I
I ogue-code-length I I zogue-omode-legt I

The initial rogue-code-length bytes in the host program are

then overwritten with the rogue code. The rogue program

triggers its preprogrammed function, and returns execution to

the carrier program. The newly infected program is now itself

a carrier program. The rogue program does not manifest any

activity until the newly infected program is executed. The

status of User Program I is now the following:

Infe~ctor Program 1 User Nove Status-I I - I 0totu --- --

The original beginning of User Program 1 has been retained, so

the host program can still execute properly. Once the

infected User Program 1 executes, the routine begins again.

The rogue program:

1. seeks an area in the beginning of User Program 2,

activates mover to copy that section,

26

2. appends itself to the space provided,

3- activates the task portion of the int t component to

execute the preprogrammed task, and

4. tries to infect the next user program, and remains

dormant until the program is executed.

Although User Program 1 is infected, after the rogue program

code performs its function, the program continues to function

normally, making detection nearly impossible unless the user

notices that the file size has increased.

This scenario has many variations. For example, a rogue

program can place onl- part of the rogue code in the beginning

of the host program and append the rest to the end. The rogue

code can place its code anywhere in the host program, although

placing it in areas other than the beginning and end is more

difficult.

27

2.2 Computer Networks

Computer Networks generally use some type of cable for their

communication media. Citations"4 4 ' adequately define and

discuss networks. They can be configured as LANs, Metropolitan

Area Networks (MANs) or Wide Area Networks (WANs)°'*".

Networks provide resource sharing and interconnection. They

must also ensure data integrity, secrecy, and service

availability"2 . Networks provide data integrity when they

protect data from unauthorized destruction or modification.

They provide data secrecy when they protect data from

unauthorized disclosure, and they provide service availability

when they protect the system deliberate performance

degradation. Therefore, to ensure integrity, secrecy and

service availability, only the authorized users can access the

network and data processing must be protected within the

system".

2.2.1 Network Access

Unlike many stand-alone systems, networks generally use some

form of access control such as identification and

authentication. These controls ensure that only authorized

users have access to the system or system information. While

passwords are the oldest and perhaps the most familiar

28

personal identifiers, other techniques such as biometrics"' and

smartcards 55 are available.

2.2.2 Network Bystem frooesslng and Vulnerabilities

Incorporating security into the operating system is one way to

protect data processing. Operating systems generally provide

several security related functions" which are generally

located in the operating system kernel' 57 where they monitor

and protect all operating system accesses and functions.

Some network operating systems vulnerabilities or functions

vulnerable to rogue program attack include"

1. I/O processing weaknesses,

2. access policy ambiguity, and

3. readily available commercial-off-the-shelf (COTS)

programs are vulnerable because there are many of

these and so many people use them.

I/O processing becomes vulnerable when, in the interest of

fast data transfer, the operating system bypasses the

particular functions protection features.

* The operating system kernel perform. the operating

system low-level functions.

29

The computer industry has found it difficult to establish a

fixed, all encompassing network access policy because of

problems with accurately defining the difference between

isolating users and allowing then to implement the security

kernel. It is important to separate users to protect their

data, but, it ia just as important to provide them access to

data to do their job, such as shared access to libraries,

utility programs, and common application data.

People implementing operating systems accommodate COTS

packages by using "hooks" to install these packages. Any user

can find these hooks and use them as trapdoors* to access and

infiltrate the system.

Network operating systems can provide security and controls

for all programu that run in its environment, but their size

and complexity make it difficult to protect them.

Other functions vulnerable to rogue program attack for

networks can include:

1. Accessibility. Networks are easily accessible, since

there are so many computers interconnected; there are

" A trapdoor is a secret access to a software program for

debugging and developing functions.

30

multiple points of attack. The level of security at any

node is dependent entirely on whatever security measures

(if any) are in place at that particular node.

2. Resource sharing. Generally, if one computer in a

network is infected, other computers are also infected.

3. Routing paths. Users can seldom control the routing

of their messages.

4. Unknown nodes. As networks continue to proliferate,

security measures at the new nodes will become more and

more unreliable.

2.3 Use of Wireless Las

An alternative technology to "cable-bound" LANs is the

wireless LAW. Wireless LANs free people from the hardware

location restrictions as well as to managing and maintaining

miles of wires that connect workstations. Wireless LANs

provide hardware mobility and flexibility - essential

requirements in our highly mobile society. Managers can

configure networks to transmit data via RF transmissions.

Currently eight companiess9, 60 261,63.6.364'64 produce wireless LANs.

31

F 1 gqvr 0 3 1 i s t s these companies

with their specifications:

Do• woroe am * ja EMWmm faft Wf

m~ $13 *~5k E Al ~U
M ume- S []

O l3mt ins OR U4b Va "b ow

ni "U Ef R hI k b l N

In Uin M R bi R 4 Uilk 6 lb No

In 010 ie R =OOR 04s Va b•

b''" a sie mbp igbOR OH lo 1b No

M O Imp ilk OR 00k Va "• o

K sk I-U I b ik EOR S4 h lN lbI

Figure 3. Wireless LAN& and Specifications

1. NCR Wireless LAN Systa (WAVULAN); 2. Motorola's
Wireless LAN Network (Altair); 3. O'Neill's Comunications'
Looal Area Wireless Network (LAWN); 4. Proxin Inc.'s ProxNet
(alias RageLAN)); 5. Telesysteas SLW Inc. 'Im ARLAN 600 Wireless
Network System; 6. California Microwave Inc. 'I RadioLink
Network; 7. black Box Corporation's BesLLAN; 8. 1DM'. Wireless
LAN (TBK).

32

Other companies" , such as BiCC Communications of Auburn,

Massachusetts, and Photonics Systems Inc. of Northwood, Ohio,

manufacture wirelfiss LANs that use infrared rather than RF

transmission techniques. Infrared LANs use basically the same

technology as remote-control units for television, VCR or

stereo which employ the light spectrum to transmit data

between nodes. Infrared transmission uses a much higher data

rate than its RF counterpart, and unlike RF wireless LANs, is

immune to radio interference.

Unlike RF systems, an infrared system requires that its units

be in direct line of sight with each other; signals cannot be

transmitted through physical barriers, such as walls and

furniture.

Wireless LANs, unlike conventional LANs, are more vulnerable

to rogue program infection because with enough resources and

time, intruders can scan radio waves and intercept, analyze

and possibly decode and retransmit data into the communication

medium. Although some hosts use wireless LAN modules that use

spread spectrum* technology which makes it difficult to

intercept data between hosts, all an intruder needs to do is

" Spread spectrum radio transmissions distribute the

transmitted data across multiple frequencies.

33

to use one of eight available modules so ie does not have to

break any code; the correct module does it for him.

Computer, operating system, network standardization, increased

use of distributed systems, and computer connectivity enhance

the viability of attacking wireless LANs. All an intruder

needs is a complete description of the transmission

frequencies, modulation, synchronization and coding function

(as discussed in the next chapter).

Using RF to communicate among computers is not new. For

example, the world's first computer system to utilize ground

based radio packet broadcasting for its communication facility

was the ALOHANET system at the University of Hawaii in 1970.

Another example of using RF technology to communicate is the

Captain Midnight Escapades of 1986. The following subsections

discuss the these similar technologies.

2.3.1 The ALOKANUT

The ALOHANET (Figure 466) used packet broadcasting via radio

to give seven campuses on four islands access to a central

computer in Oahu. Each campus communicated with the central

computer by using an FM radio transceiver whose power was

34

boosted with powerful repeaters. Two distinct 100 lhz

channels were employed: an inbound random access channel,

since the probability of contention was high, and an outbound

broadcasting channel, since contention was minimal. There

were no direct station to station communications". The

ALOHANET became defunct in 1979 when a wire-based LAN cable

was installed.

IIi

-- •hmu.) cm .J.--jtLa.mi If q.=,•,

Figure 4. Schematic of the ALO9I4UT

~35

m0 Im mm m 3M lw mfuO

2.3.2 Captain Midnight 3scapades

The captain Midnight Escapades also used RF technology.

Shortly after midnight in April and June 1986, a disgruntled

satellite dish user and non-Home Box Office (HBO) cable

subscriber preempted HBO with the fcllowing message decrying

scrambling:

"Good Evening HBO from Captain Midnight.

$12.95? No Way! Showtime/The Movie Channel

Beware!"

Captain Midnight used a transponder at the Central Florida

Teleport Co., where he worked, in Ocala, Florida. The

transponder consisted of a 10 meter satellite dish with 2000

watts of RF power. It was sufficient to overpower the HBO

signal, much to the dismay of the cable company, but to the

delight of many satellite dish owners throughout the country7".

2.4 Trends That increase The Feasibility of Inserting

Rogue Code Remotely

The evolution, development and proliferation of computing

networks have significantly enhanced system vulnerabilities to

rogue program attacks. Operating system and computer

standardization, expanded use of distributed systems, network

36

connectivity, and wireless LANs have all increased the

viability of successful rogue program intrusion.

2.4.1 Operating Syatems and ComputeZ Standardization

Operating systems, because they are standardized,

interoperable, transportable, and form a common platform have

become a major target for rogue program attacks. Operating

systems vulnerabilities are well known. Journals7l, books7",

and periodicals"' 7'" delineate ways to identify such

vulnerabilities systematically. Figure 5 enumerates some

operating system components vulnerable to rogue program

attacks.

37

fterating Glsteas

Vulnerable to Attack

File Structure Files/ Same Same
Directories (Finder)

System Functions DOS Functions Kernel Resources
(Code,CDEV,
Patch)

Boot-up Boot-up Seq Same Init
Sequence Resource

Command Command.Com Shell System File
Interpreter Toolbox

Hidden Files I/O.SYS NA Desktop
MSDOS.SYS File

Telecommunication NA System Network NA
Utilities (i.e.,
mail forwarding,
authorized access,
trusted host files)

Figure S. Susceptibility of Operating Systems

In addition, books such as Mark Ludwig's The Little Black Book

of Computer Viruses'5 teaches the basics of writing rogue

programs, complete with examples.

38

To promote interoperability and transportability and to

control acquisition and support costs, standard commercial

off-the-shelf (COTS) hardware and software systems that meet

national or international standards are becoming more popular"

than customized hardware and software. Using COTS saves money

and reduces the logistical support needed to maintain

software. Because the ratio of CPU performance to price

doubles every year, it is not cost-effective to develop

hardware or software from scratch, which can require up to ten

years to develop and deploy7.

Users must be able to deploy systems rapidly and have access

to portable software to adapt quickly to standardization

hardware. Hardware standardization includes fixed and floppy

drives, controllers, chips, boards, power sources, video cards

and monitors, CPU, and many peripherals. Software

standardization packages include WordPerfect, Dbase, Lotus

123, Harvard Graphics, plus other management and decision-

oriented software packages.

Al, the features which make COTS hardware and software so

appealing are the same features that make these systems

vulnerable to rogue code attack. COTS products include a rich

spa- set of functions such as computer architecture

39

benchmarks, routines, and protocols to provide the maximum

flexibility and functionality. But because they are so

flexible, intruders, if they can detect a flaw in any of these

functions, can access all network nodes.

2.4.2 Distributed Systems Standardization

The computing community including government and corporate

services, banking institutions, airlines, and military

services, nationwide department stores, and computer stores

widely employ distributed systems. Corporations are

increasing their use of distributed processing because

standards organizations such as the Open Software Foundation

(OSF), the International Standards Organization (ISO), and

Consultative Committee on International Telegraph and

Telephone (CCITT) are endorsing it.

OSF, a consortium founded by Hewlett-Packard, IBM, and Digital

Equipment Corp, announced the components of a Distributed

Computing Environment (DCE) in May 1990. This environment

allows users to run distributed processing applications across

a network to allocate the processing power of the

networkdynamically. The consortium released the preliminary

version of the OSF-Distributed-Computing-Environment technolo-

40

gy in 1991".

The ISO, including constituents of the national standards

organizations In the member countries, deals with

international standardization of various protocols. CCITt,

consisting of national, public and private telecommunication

administrations, is primarily concerned with telephone and

data communications systems. The ISO and CCITT are both

standardizing a framework for structuring distributed

applications. ISO is expected to release the Open Distributed

Processing (ODP) Draft International Standard which addresses

distributed applications in 19957".

The "Big Three" software companies, Lotus Development,

Microsoft, and WordPerfect, are competing for developers and

customers to use their own distributed architectures. Each

architectural design is centered around computer systems and

interconnectivity, application integration, advanced

functionality and common user interface'.

Stand-alone and distributed systems share some of the same

risks; however, distributed system are far more vulnerable

than stand-alone systems for the following reasons:

41

1. Intruders can propagate infection easily because

distributed systems are interconnected. For example, one

infected machine can contaminate all the machines

throughout the communications subsystem.

2. Multiple access points to the connected system and

multiple security mechanism levels for each host make

installing rogue code easy. The more hosts that there

are, the greater their availability, and the greater the

likelihood of getting hit with a rogue code, especially

if one host is already infected.

3. The availability of a multitude of other services

such as network system utilities which include file

transfer, remote job entry, and sharing of computing

functions provide a rich environment for a rogue program

attack.

4. Because distributed systems are harder than stand-

alone systems to debug, they require more debugging

tools. Sometimes, debugging routines bypass security

checks and thereby enhance the system's susceptibility to

rogue program attacks.

5. Normally, only a client host distributes new or

improved software. When users log-on, as in the case of

"prodigy" updates, the host automatically downloads files

to the user's machine". Because only one host is

42

involved, intruders can readily determine system

weaknesses.

2.4.3 3nhanoed Computer Conneotivity

Increased computer connectivity is inherent in standard

operating systems, networks, and distributed systems. There

were over 400,000 LANs and LAN-operating systems sold in the

United States in 199262. Customers probably purchased these

LANs to send and receive electronic mail; however, file

sharing is expected to play a progressively more important

influence, especially with client/server networking*.

Therefore, because of connectivity, the whole world may be

able to access your electronic door.

2. SSummary

This chapter described rogue prograv characteristics,

discussed computer networks' susceptibility to rogue code

attack, and the use of wireless LANs, trends that increase the

feasibility of remotely inserting rogue code by RF and how

rogue programs infect wireless LANs. Chapter 3 uses this

The computing system that used to run on a single
machine is now a distributed system spread across multiple
computers, technologies, geographies, and organizational
functions.

43

knowledge of rogue programs to develop an abstract model of

the rogue code insertion process into a communication data

stream to a targeted host via radio frequency. Chapter 4

instantiates the abstract model developed in chapter 3 on a

DOS-based system.

44

Chapter 3 RlMOTELY INEnRTXNG ROGUN CODI INTO
A WIRELEIN LAS UBXNG VADO RU•QUMCY

3.1 Introduction

Xn Chapter 1, the purpose of the dissertation was discussed.

In Chapter 2, characteristics of rogue programs were

delineated (what they were, how they were structured and how

they functioned), networks discussed, and the concept of

wireless LANs introduced. This chapter develops an abstract

model of the rogue code insertion process into a targeted

(networked) wireless communications system using Radio

Frequency (RV) atmospheric signal transmission.

The first three sections provide background information and

the reasons for developing an abstract model. Section 4

discusses the abstract model. The model is general enough to

apply to widely used target environments such as UNIX,

Macintosh and DOS operating systems. In Chapter 4, a DOS-

based model is used to demonstrate the feasibility of actually

inserting rogue code to a targeted host via RF.

This chapter has five sections: an introduction (3.1);

background (3.2); reason for the model and its attack

mechanisms (3.3); model development (3.4), and summary (3.5).

45

3.2 Background

Rogue codes can rapidly spread throughout target computer

networks43 which are vulnerable to rogue code attacks. The

magnitude of tha damage depends on the intruder's intent and

the system's safeguards against infection. In October 1989,

Cramer and Pratt's "Computer Virus Countermeasures - A New

Type of Electronic Warfare," discussed for the first time

applying computer rogue program techniques to electronic

warfare"4°'1. This dissertation is the first to develop a

generic model to model the insertion of rogue code into a

targeted system and instantiate it on a DOS-based system.

3.3 Attaok Goals

We have so far discussed similar technologies to use RF to

effect computer communications. The following subsections

discuss the motivation to develop a general model of the rogue

code insertion process, rogue code insertion procedures and

verifying insertion success.

3.3.1 Motivation to Develop an Abstract Model

The reason to develop an abstract model is to show how easy it

can be to insert rogue code into a targeted host via RF. The

46

purpose of inserting rogue code into a targeted host can

include a variety of covert goals including disrupting,

degrading or exploiting the targeted host's operational

capabilities to function properly. The main components of the

model at a conceptual level shown in Figure 6 are the

intruder, the attack mechanism and the targeted host.

bw& --

Figure 6. Conceptual Model

To affect a targeted host's operations adversely, the

intruder's program must insert, modify or delete the host's

control messages. Such manipulations can among other things

cause the routing algorithm to select suboptimal routing.

47

Distributed system nodes can be highly vulnerable to false

system nontrol messages, either from communications errors or

from a deliberate attack. For example, the Internet is

vulnerable to false control messages being inserted either on

interswitch communication lines or from one of the switches

themselves (switches are the network's connection

mechanisms]86. Flooding the network with a continuous stream

of bogus messages can significantly increase processing time

and hence disrupt or degrade the system's operations. Packet

communications are very vulnerable to a variety of fraudulent

message and message alteration attacks because packets can be

generated that appear to have come from another source.

Packets can be captured, modified and reinserted into a

network without the bonafide hosts knowing it.

Other typical approaches to disrupting or degrading a targeted

host's operations include forcing a system crash, destroying

data, or inserting delays in real time systems. An intruder

can easily cause a system crash by modifying a program which

executes automatically during the booting procedure such as

COMMAND.COM for DOS-based machines. Destroying data is

another way of disrupting or degrading the system. An

intruder can destroy data by overwriting or erasing the data

or by changing the pointers to that data. For example, the

48

intruder could change the pointers on a DOS-based machine by

modifying the FAT. He can alter data either en masse or

piecemeal, depending on his goals. He can also disrupt or

degrade data by writing a rogue program that delays packets.

Disruption and degradation attacks can be referred to as

denial of service attacks because they are intended to reduce

the communication channel's information carrying capacity.

Intruders can use passive measures in addition to active

measures to gain valuable information from a targeted host

such as revealing the host's system resources, such as

configuration and data and system files, and addresses and

listings of trusted hosts to which they are connected. The

intruder can exploit this information at the time of the

attack or at a later date.

3.3.2 Attack Method

The following "Attack Process Events Time Line" provides the

guidelines (Figure 7) for examining the attack process:

"Attack Process Events Time Line"

1. Determine Possible Target Hosts

2. Probe Target Characteristics

3. Build A Rogue Program

4. Task the Rogue Program

5. Rogue Program Executes Task at Predetermined Time.

49

Iigur?.i ttai Tim Ln

prob syte caacerstc an eouce to dtmi em if th

lmwl

mpg
za

NI d "V

Figue 7. httack Tin•e Line

First, the intruder must list targeted hosts. Then, he must

probe system characteristics and resources to determine if the

attack against a specific host is viable. If attacking a

specific host is not viable, he will continue to attack other

hosts until he is successful. Once he is successful, he must

determine his goals. If his goals are feasible, the intruder

will build the rogue program code and infect the system with

it. If the goals are not feasible, he can modify them.

Depending on the intruder's goal, the rogue program can lie

dormant for future execution or be executed immediately.

50

3.3.3 Verifying the Suocess of Rogue Code UxoCution

Intruders must give serious consideration to determining if

the rogue code is in control. For example, an intruder might

build a signal into the program that would respond

automatically or upon request to verify that the injected code

is operational. The rogue program may send such a signal,

which would require a very small bandwidth via covert channels

so that the host system could not detect the signal and the

infection. However, such a strategy would promote

apportunitios for detection by the targeted host. Depending

on the situation, it may be worth the risk of exposure to

obtain confirmation.

Another option available to the attacker to ensure that the

rogue program is actually doing what it was designed to do is

to conduct covert or overt testing upon infection or

periodically after infection.

Covert or overt testing can be conducted with a system similar

to the targeted hosts' system in a controlled environment

established by the attacker. The authenticity of such a

system would depend on how much information was available on

the targeted system this "analogous parallel" system may

consist of an abbr-Aviated or an exact version of the targeted

host. Although intruders can verify that they have infected

51

the host with the rogue code they can not predict how the

rogue code will affect the host, because they do not have full

knowledge of software, special hardware, or firmware. In

shtort, there does not appear to be an adequate feedback

mechanism to determine the operational status of such rogue

programs or to control them once they are executed.

3.4 An Abstraot Model - Overview

The abstract model has three components: requ).red parameters,

defense measures, and t~ie a cost benefit anialysis. ?igqve S

pictorializes the abstract model.

52

71•re~~~~ 7,Th ostao de

mm

$. . IParmeersandReum.ee &

conidre ae thareedntwr' -omncton hne

LIMU

Figure 7t The Abstraot oodel

3.4.1 Varameters and Requirements

To develop an abstract model it is first necessary to identify

the parameters and requirements that exist within a system.

Within the context of a network, the key parameters to be

considered are the targeted network,'s communications channel

in order to format the rogue code properly so that the

53

receiving host would accept it and how the target host

processed the data it received from a communications link

including the target host's protocols and applications.

3.4.1.1 Communicatiotns Channel

A network may consist of a series of homogeneous or

heterogeneous computers connrcted in a local area network
(LAN) or i.n a wide area networ). (WAN). The communication ever

connecting transmission media is acconplished using couplex

protocols. Protocols are designed as a neries of dependent

layern• to attenuate their complexity. While the topology of

these layers may differ for different networks, the

characteristics are basically the same.

The International Organization for Standardization (ISO) has

proposed the Reference Model of Open Systeas Interconnootion

(OI), as a first step toward internationally standardizing

the various protocols. The IS00S1 reference model, commonly

known as OI¶, has seven layers, each one built on the

previous layer; each with its own specific function (see

Figure 9).

54

I I TI I I I I I !-

F

[-jj I , IWE N Ml. E ILt! N I iE I E

?a ft ftl WC n **e " a11J dm ml oI~m ~ b
11 hd VA&n wihruin MuWu

no -t lt now bbim"

E: N6 ftk h mw muf I.m

Figure 9. 081 "essage ITansmission Format

A sender initiates message transmission at layer 7 with an

application program. Message transmission traverses the

interdependent layers down to layer 1, the physical layer,

which is concerned with transmitting specifically formatted,

individual bits over a communication channel to the physical

layer at the receiver.

55

While the above series of layers simplify the protocol, they

also introduce more opportunity for rogue code programmers to

penetrate systems especially since networks were not designed

with security as a high priority. See Figure 10 for OSI

vulnerabilities.

2. •qmotnad •---I.SeuiJ

1. hmm 5L
2.Lin - 2.1 h- amd I(

&wpO . of n-2.

1. MW*ft Urk4 UL3 aNO iSriý 11

ciptI~~ ~ F1.F 1. WWinEW Fi Rýa

a~~ ~ 1m Iw LdfJ w -I

Frigure 10. 081 Layer Vulnerabilities

56

3.4.1.2 Data Stream Conformation

The injected rogue code must be formatted properly for the

targeted host to interpret it as normal network data. The ISO

OSI model follows this message transmission format:

Where:
8 is the Data Link Header - Frame Marker
V is the Network Header - Routing
T is the Transport Header - Priority
S is the Session Header - Synchronization
X is the Message
Z is the Data Link Trailer - Error Correction

The intruder must also know the following parameters to be

able to insert the rogue code into the data stream

effectively:

1. transmission frequency

2. synchronization

3. coding characteristics.

We describe these now.

3.4.1.2.1 Transmission Frequenay

Transmission frequencies vary from 300 bits per second to 2

Mbpa. The intruder must know this frequency, which determines

the message transmission rate, to insert rogue code into a

data stream.

57

3.4.1.2.2 YRolhronisd Communioation

Communication is synchronized when the data characters and

bits are transmitted and the sending and receiving hosts are

synchronized. For example, when one interface message process

(IMP) wants to send a frame to another IMP, it sets the frame

in a memory buffer and then starts the transmission hardware.

Before sending the first character in the buffer, the

transmission hardware sends a synchronizing signal defining

the start of the frame. After the message is transmitted,

another synchronizing signal is sent to define that the

process is completed. There is a finite amount of time

allotted for specific packets to be transmitted and

acknowledged. Synchronization signals also define the time

period that a sending host will wait until a packet is resent

if no acknowledgement is received. Such signals define delays

among hosts as well. Therefore, to inject rogue code into a

data network successfully, the intruder has to know the

synchronization signals.

3.4.1.2.3 Co4ing Characteristics

Coding characteristics include transfer modes, such as ASCII

and octet, packet size, and other structural parameters. The

intruder must know these characteristics to make the rogue

code look like the code it is replacing; otherwise the

receiving host will reject it.

58

3.4.1.3 Code GenOa&tion

Unlike standard methods of inserting rogue code into target

systems where code size is not critical, the rogue code to be

inserted via RF should be small. The time period within which

such code can be injected during a transmission is limited.

Hence, limited insertion time dictates limited code size. A

packet size code of 512 bytes or less would be optimal. Note

that the smallest known rogue program, the "Define Virus", is

only 30 bytes".

Intruders can compress the rogue code to make it as small as

possible. After they inject this compressed code into the

targeted data stream, and the "duped" host accepts it, it can

decompress and infect the targeted host while remaining

inconspicuous. The following modules help the reader

understand how an intruder can compress rogue code and infect

computer systems:

Prober Module Activator Module Trigger Module

The Prober Module ascertains the target host's specific

characteristics and gives them to the Activator Module. The

59

Aotivator Module contains the "builder," which collects and

analyzes all data to build or create the rogue code, to create

a rogue program which uses the targeted system's own

resources. The Trigger Module executes the assigned tasks and

propagates at will by using stealth techniques as discussed in

chapter 1 (hides, infiltrates, bypasses antirogue program

tools in place).

The Prober Module (Figure 11) decompresses (if the code is

compresbed) and initiates its probing function.

VWm 8&mW UUtMm J i Ihup Otf

Figuroe 11. Prober Nodule

The abstract model's prober is instantiated by the Internnt

Worm's probey module functions; they both probe the targeted

machines in the network for information using system

utilities, public configuration files and the target's

60

interrupt vectors.

If the probing module is successful, it performs the following

sequence:

1. makes a copy of the original, compressed code

2. stores the compressed code in high memory for DOS

machines or in another file for other platforms

3. "feeds" the information it has obtained to the

Activator Module so that the Activator Module can

compile the rogue code

4. searches for other viable paths to propagate the

rogue code to other hosts.

If the probing module successfully performs this sequence, it

transLits the original, compressed code to identified hosts

and deletes its original copy from memory or deletes the file

within which it used to hide.

If the probing module is unsuccessful, it continues its

attempt to perform the sequence with the exception that it

does not feed information to the Activator Module. Each time

it fails, it deletes itself from the particular network it is

trying to invade and keeps trying to invade targeted networks

until it is successful.

61

The Prober Module activates the Activator Nodule (Figure 12)

which consists of a decompressor unit, a compiler and groper

units. The decompressor unit decompresses the compressed

rogue code. The "builder" unit compiles its code to build the

rogue program, and the groper unit seeks procedural or

technical vulnerabilities, such as poor passwords which will

be feed into the Trigger Module.

hprw

Figure 12. Aotivator Nodule

The Trigger Module -.Figure 13) executes the rogue program to

infect the targeted system. It uses stealth techniques to

infiltrate the system, bypass any resident antirogue program

62

tools, camouflage itself, and propagate at will.

HkI~s
7igure 13. Trigger Nodule

The technique of injecting rogue code into the target's host

data stream may include creating a virus, while subsequent

propagations may include transmitting a worm. Viruses do not

require network connectivity as worms do, and can therefore

access more machines than worms. This dissertation's attack

uses a virus to infiltrate the targeted system. Pigure 14

illustrates the Generic Rogue Program Insertion Model and

pictorializes direct and indirect rogue code attack

mechanisms.

63

•Bka

Figure 14. Insertion Xodule

3.4.1.4 Required Resources

To ascertain the required parameters as discussed above and

insert rogue code via RF into a targeted system, the model

uses "ham-radio" technology. The following three hardware

components are required to insert r:ogue code into an RF data

stream:

1. a computer system

2. a computer hardware/radio interface system (CHRIS)

3. a transceiver.

64

It is assumed that the most age is in clear text. Otherwise

the intruder would have tc capture and decrypt the message to

determine all parameters, and insert the rogue code into the

system.

The intruder uses commercially available and inexpensive

hardware components to insert rogue via RF into a computer

system (Figure IS).

65

AA5

Q,,I$

* 2o," o.

04A IL0
* 8

a :I i
" "-i S

0.0

II* SI 0

'VHF-UHF PORTABLES O

to , a

VHF-U.HF BASER,,•

I II,V-HF.lHF BA°* o -

via~

imp -04j1111 iI~ 9 - J101h1
HF TRANSCEI1VFR .S"M.0I f. zir

Fi~gure 15. Ha-rdware Resources

! 6

SI I !' 1 i ' -

The Computer Hardware/Radio Interface System (CHRIS), Figure

16, the interface device between the computer terminal arid RF

transceiver, assembles and disassembles packets and detects

errors. The transceiver (radio) transmits and receives data.

The intruder uses these three components to intercept and

download packets to determine required parameters such as

communication protocol, message transmission format,

transmission frequency, synchronization, and coding

characteristics. The intruder can then replace specified

packets with rogue code.

• • mb-wH h• ---lb imh)d

Mba FpO

liguro 16. Computer Hardvar./Radio Interfacs
System (CHRlS)

67

RS-232 communications ports make configuring the CHRIS easy.

For example, a RS-232 cable allows the CHRIS to interface with

the computer and the transceiver. The standard RS-232C serial

* port consists of up to 25 pins, only a handful of which are

required to configure the CHRIS (Figure 17).

Tmmob

Figure 17. Zxample Configuration

68

3.4.2 Defense Measures

While subsection 3.4.1 developed the nucleus of the abstract

model, by determining the communication protocol, message

transmission format, frequency, synchronization, coding

characteristics and required resources, subsections 3.4.2 and

3.4.3 extend the model. In subsection 3.4.2, defensive

measures and countermeasures are incorporated into the

abstract model to complete it. Further, subsection 3.4.3

addresses whether the defenses are cost justified.

The following six techniques can be used to defend against RF-

insertion:

1. cyclic redundancy checks (CRCs)

2. checksums

3. encryption

4. digital signatures

5. built-in security controls

6. combinations of the above

For purposes of illustration, the experiment described in this

dissertation uses CRCs and checksums to demonstrate successful

detection of rogue code insertion.

The cost-benefit analysis, subsection 3.4.3, indicates if

using these protective techniques Is cost-justified.

69

3.4.2.1 CRCs

CRCs check the number of a file's sequential bytes to assign

a unique number for that file by treating bits as a

representation of a polynomial with coefficients of 0 and 1.

For example, a k-bit message is regarded as the coefficient

list for a polynomial with one or more k terms, ranging from

3e" to x° with a degree of k-1. For example, 101011

represents a six term polynomial with coefficients 1,0,1,0,1,1

or X+Xz+xL-+z. To produce the unique number, polynomial

arithmetic is performed using modula 2, in accordance to the

rules of algebraic field theory". The three polynomials that

are currently the international standards are CRC-12, CRC-16,

and CRC-CCITT0 O.

CRCs can detect unsophisticated rogue programs, because any

change in the number of a file's sequential bytes produces a

different CRC. However, sophisticated rogue programs"1 such

as those containing stealth capabilities'2 can circumvent CRCs.

Therefore, a CRC check alone may not prevent such attacks.

3.4.2.2 Checksums

A checksum calculation is the exact number of a file's

individual bytes. The process of performing a checksum

verifies a file's integrity prior to execution by making sure

70

that a file has the exact number of bytes that it should have.

Checksum algorithms range from the veny simple to ultra-

complex. Users can also employ checksums in conjunction with

encryption to determine if a file has been modified. A table

of checksums for each file can be stored off-line, on a write-

protected floppy, in RON, on a card, or even encrypted

somewhere in the system. When a file is loaded, the checksum

of the executable file can be compared with the checksum in

the table of the file to verify the file's integrity. An

assortment of different checksum algorithms exist". Checksum

algorithms can detect RF-inserted, non-stealth rogue code.

3.4.2.3 Xncryption

Encryption can prevent unauthorized users from gaining access

to information. Encryption consists of an algorithm and one

or two keys. The algorithm uses a key to scramble the

message, called plaintext, into unreadable ciphertext. The

same key and the same algorithm unscramble the ciphertext'4 .

Encryption, which can both prevent the insertion of rogue code

and isolate rogue programs once a system hao been infected"3 ,

can also be effective in an RF environment. Regardless of the

context within which encryption is used, using encryption

mechanisms to transmit messages can make it very difficult for

71

rogue program writers to insert their rogue code onto a

transmission media via RF or any other means because the rogue

program writer probably will not have access to the proper key

to encipher/decipher the message. Although an encryption

algorithm may be breakable", it may not be practical to do so,

because it would take too long to decrypt it"". 4

Although encryption can be a powerful tool, it alone may not

prevent the insertion of rogue code via RF. Encryption

protects against disclosure and detects modification attempts.

Using encryption makes a potential rogue writer work harder

than if he would have to if code were not encrypted.

3.4.2.4 Digital Signatures

Digital signatures authenticate messages to defend against the

threat of rogue code insertion onto a data stream via RF.

Digital signatures can be performed at the message or at the

packet level in several ways. The three most widely used are

the Rivest-Shamir-Adelman (RSA) algorithm, the Data Encryption

Standard (DES)-based message authentication code (MAC)", and

the Digital Signature Standard (DSS)-based Digital Signature

Algorithm (DSA) 10.

72

Digital signatures make it difficult for rogue programs to

insert code. Digital signatures at the packet level will make

it virtually impossible for rogue program code to ba

successfully inserted onto a transmission media via RF. The

rogue code could be detected - if the imposter does not

possess the originator's private key. To limit performance

penalties and overhead, digital signatures can be utilized

only on the first packet of a message and still ensure

reasonable security, nominal performance degradation and lower

cost.

3.4.2.5 S1feguards Incorporated iu Commercial Wireless

LAN software

The wireless LAN software that comes with many of the

commercially available modules incorporates one or more of the

following five security mechanisms that make it difficult to

insert a covert rogue program and to infect the network nodes

in general:

1. The network software can ensure that no two nodes

have the same name.

2. The network software can use a security code to

authenticate users on the network; the code can be a

number from 1 to N, where N can be any number greater

than or equal to 1. LAN modules must have the

73

same security code to talk to each other.

3. A "so-called" secure channel can be set up so that

other modules in the network can not intercept

messages. Users can choose between two or more channels.

4. Users can purchase an encryption module separately.

5. Users can purchase an optional boot-up from ROM,

6. Many products use spread spectrum techno]ogy.

Figiure 19 compares the defensive mechanisms available with

each of the wireless LAN products discussed in section 2.3.

The products are listed in order of the number of defensive

controls incorporated.

74

201k am aft-Qb~ •11 ONE

M b ba

t VA ft N b

ma m m b

S 6 h A lb 1b Ta

Figure 30. Comparison of Wireless LANs
Defensive Mechanism*

These products (except for RadioLink) all use spread spectrum

technology and the network software defends against having two

nodes with the same name. Spread spectrum technology is

incorporated within the wireless LAN modules. If an attacker

was using the same module as the bonafide host, spread

spectrum is no longer a problem for the attacker. The module

does the necessary spreading and decoding of the data.

Moreover, although no two hosts on the wireless LAN are

75

supposed to have the same name, using O'Neill's LAWN package,

The author was able to have two hosts with the same name as

long as one of those hosts was inactive. In short, an

intruder with the same host name as a bonafide user's name

could send data to another bonafide user, assuming that all

other parameters such as rate of transmission, security code

and channel were the same. Note that the only requirement to

infectkng the system in this way is that the host that the

intruder is masquerading as is not transmitting over the

wireless LAN. The bonafide user could still be doing other

work on the computer and does not have to be logged of.

3.4.2.6 8oftware and Rardvare Mechanisms

Antirogue software products alone may not prevent rogue code

from being inserted into a transmission media but may prevent

such code from being executed at a targeted host because the

software will have detected the code before it executes.

Furthermore, this measure may be effective against only some

rogue programs. Stealth rogue programs as defined in

citation"'1 may be able to bypass some of these control

mechanisms, depending on the specific mechanism(s) used.

76

Antirogue hardware products may be effective against known as

well as unknown rcGue programs, depending on the product

quality ard control mechanism(s).

3.4.2.7 Defense Keohanisms Combinations

Finally, a combination of control mechanisms wLll provide more

protection and will makeý it raore diffi'cult for rogue programs

to bypass protection schemes. The use of encryption and

digital signatures should be considered for incorporation into

RF nets; otherwise, it may be possible tn compromise each of

them alone.

An RF net without any security mechanisms is vulnerable to

rogue program attack. All of the above control mechanisms,

singularly or combined, implemented either by software,

hardware or both, will help protect a communication channel

from rogue programs, but at a price. The next section

analyzes the cost and benefits of each control mechanisms.

3.4.3 Cost-Benefit analysis

To determine whether it would cost more to implement a control

or to accept the anticipated cost of intrusion, a cost-benefit

77

analysis can determine whetber a specific defensive control's

cost is justified. The following cost-benefit analysis is a

less comprehensive, less time consuming but more appropriate

technique than risk analysis10 2' 0°3 .10 4 . The cost-benerit

anaelysis alleviates some of the difficulties in analyzing and

evaluating those controls which would reduce the seriousness

of rogue infection via RF. It incorporates formulas devised

by Fred 'Cohen'°3 that describe the total costs per year of

rogue program defenses and by Linda Rutledge'" that determine

communication costs with a proposed access vulnerability

likelihood (VL) that we develop.. The analysis ascertains a

cost-benefit ratio by:

1. determining the accessibility of computing systems to

rogue program at :acks (VL)

2. determining the yearly cost of applying antirogue

products

3. determining the basic cost (BC), recurring cost (RC)

and the expected yearly cost of damaging the computing

system.

78

3.4.3.1 Access Vulnerability Likelihood (VL)

The VLis a unit of measure defined as the vulnerability of a

closed network resulting from the direct connection to any

node in the network and their associated links. A computing

system's accessibility to rogue program threats, how the rogue

code infiltrates the computer system, includes topological,

vector and functional factorýe (Fiigue 19).

Figure 19. Accessibility Vulnerability
Likelihood Components

Topological factors, the physical characteristics of a

computing system, connoted by T, consist of

connectivity/interface links among computing systems. These

79

links are potential entry points for infection. Vector

factors, connoted by V, consist of carriers that serve as

rogue program vectors directly connected from each link.

Vector factors are used to determine the likelihood that link

interfaces are infected. Functional factors, which may be

based on subjective experiences and are assigned weights,

connoted by F1, consist of the likelihood of penetration Ftd

and the havoc* Fih a rogue program can inflict which depends on

the presence of or lack of defense mechanisms a computing

system incorporates. The Functional Factors, F1 , can be

denoted as F, - Fid * Fih. See Figure 20.

" damage a rogue program can cause

80

T. V F

ii i d I I , I I I• I I I i I i i I I L I III I

Figure 20. accessibility Factors

Therefore, to calculate the VL:

a V

VL (V/T)* (F + me (F *

Where:

T = topological factor
V = vector factor
F= functional factor or Fi4 * Fih
Fid= penetration likelihood
Fih= havoc/damage likelihood
i = index
j = index
n - number of subsystems (nodes)

81

3.4.3.2 Yearly Cost of Safeguards (YCSG)

To determine if the costs of applying safeguards are

justified, the YCSG must be computed. To determine the yearly

cost for cryptographic equipment for encrypting, digital

signatures and authenticating messages, and the various

antirogue products such as scanners, eradicators, monitors and

cryptographic checksums, the following subset of Fred

Cohen's 10 7 parameters are used:

1. the number of scans/checks (C) to be condicted

2. the "Loss of employee productivity (P) during

scans

3. the time (T) to perform the scan

4. the one-time cost for licensing/purchasing (L) the

product

5. the cost for key management (M)

6. the cost for installation and updates (U), which

includes the time to install/update (Ut) plus

labor costs V., and

7. the cost for eradicating (Z) detected rogue

programs, which includes the time required to clean

up (Z,), to restore damaged files (Zr,), and costs of

labcor (Rd8

Therefore, the yearly cost of safeguards is calculated as

follows:

Yearly cost of SafeGuard (YCSG) - (CPT + M + U + L + E)

Where u= UL + U,

E= E+ E. + EC

3.4.3.3 Basic and Recurring Costs

To determine the one time basic cost and the recurring

communioation cost of each system without any incorporated

safeguards, the following subset of Linda Rutledge's91 0

parameters are used:

1. basic costs (BC) (nonrecurring) including the cost

for:

"* hardware (Nh),

"* software (14.)

"* installation (Ni) and

"* network connection (N,)

2. recurring costs (RC), including costs for:

* call -initiation cost (Rb), which consists of:

** overhead cost to establish communication

with the destination computing system (Rb),

plus

** cost of the time that a carrier signal

83

must be present for the destination computing

system to respond (Rb,),

times

•* the number of ports (Lp), and

* the cost for data transmission overhead (Re)

Therefore, the Total Cost = S(BC + RC)

Where:

8 = the number of subsystems

Basic Cost (BC) = N

Where N = Nh + Ns + Ni + Nn

Recurring Cost (RC) - R

Where R = Rb + Rt

Rb = Rbp(Rbo+ Rbr)

At this point, we can calculate the ratio of the expected loss

if no safeguards are implemented and the expected loss if

safeguards are implemented as follows:

Loss-Ratio=(VL* (BC+RC)) / ((VL* ((1-%SAFE) *(BC+RC)))+CSG)

Where

84

VL*(BC+RC)-the expected loss if no

safeguards are implemented

((VL*({(-%SAFE)*(BC+RC)))+CSG)-the expected loss with

safeguards implemented

%SAFE=the percentage of

protection the safeguards

provide

Therefore, the Cost-Benef it Ratio for an unprotected system is

calculated as follows:

Cost-Benefit Ratio = BSMG / CSFG

Where:

BSMG - Benefit per system from safeguards

= (VL*BC) - (VL*((1 - %SAFE)BC))

CSFG - Cost per system for safeguard

= CSG

This completes the abstract model. Section 4.5 instantiates

the cost-benefit analysis using 3 computing systems consisting

of a total of 9 links to determine if the defensive measures

are cost-justified.

85

3.5 Sunmary

This chapter developed a generic abstract model of the rogue

code insertion process into a communication channel via RF,

delineated the parameters, requirements and resources to

insert the code and examined insertion goals and methods.

Moreover, the proposed cost-benefit component was discussed to

determine whether it would cost more to implement a control or

to accept the anticipated cost of the loss. The cost-benefit

analysis allows the user to determine the point of diminishing

returns whenever the benefit per system, which is the expected

loss without safeguard minus the expected loss with

safeguards, equals the cost of safeguards.

Building on the work of Cohen1 0' and Rutledge-10 to determine

the total costs of computing systems used for transmitting

messages, a cost-benefit component to determine the cost

effectiveness of using defense controls against rogue programs

was proposed. The next chapter instantiates the abstract

model on a DOS-based computing system using O'Neill

Communication wireless LAN, called LAWN, to insert rogue code

into a targeted host by RF.

56

Chapter 4 MODIL INSTATITATION

4.1 Introduction

This chapter instantiates the abstract model developed in

chapter 3 to insert rogue code into a target host's

communication data stream using RF and provides data for the

formulas developed in chapter 3. The technique used to

instantiate the abstract model presumes that an adversary

intent on inserting rogue code can covertly monitor all

communications traffic among legitimate network members. The

chapter also discusses how the model matcheb the conditions of

the abstract model, examines the two control mechanisms

implemented to prevent rogue code insertion via RF, provides

examples of the cost-benefit component proposed in chapter 3

to determine if the defensive measures are cost-justified, and

discusses various techniques to insert rogue code into a

targeted host.

Chapter 4 has seven sections: the introduction (4.1);

experiment setting (4.2); abstract model instantiation

including the environment description to instantiate the model

on a DOS-based system (4.3); two control mechanisms

implemented to prevent rogue code insertions via RF (4.4) and

cost-benefit analysis that determines that the defense

measures were cost-justified (4.5); techniques to insert rogue

code into a targeted host (4.6); summary (4.7).

87

4.2 background

The chapter describes the Remote Insertion of Rogue Code

(RIRC) Experiment conducted on 18 October 1991. The author

uses the ISO 8473 Connectionless-mode Network Protocol"-

(CLNP) for network level connectivity, and the Trivial File

Transfer Protocol'" (TFTP) as its basic transmission protocol

through applications level connectivity to insert the rogue

code. CLNP and TFTP perform the same functions as the better

known communication protocols, the Transmission Control

Protocol"' (TCP) for network level connectivity and the

Internet Protocol1 1 (IP) for its transmission protocol,

respectively.

In the RIRC experiment, three IBM PC-compatible computer

systems connected an RF local area network, using O'Neill

Communications' Local Area Wireless Network (LAWN) modules.

The author copied a file between two computer systems to

ensure that the file transfer software worked. The third

computer system, acting as an impostor, was then activated to

insert rogue code into the data stream as the file was being

transferred a second time between the same two legitimate

computer systems. The innocent recipient computer executed

the rogue code who-. it executed the infected file, thereby

illustrating the rogue code's successful insertion.

88

The experiment showed that a rogue program could be inserted

via RIT into a network with only built in security mechanisms.

Although intruders have more difficulty subverting secure

networks, the above experiment is valid although insertion

techniques are more complex for these syst.,m.

4.3 Parameters and Reeipreseats

Determining the target host's parameters and requirements was

not difficult. In the experiment, because the intruder host

used the same hardware module as the bonafide hosts, he knew

the target network's communications protocol. The LAWN module

automatically formatted the rogue code and the receiving host

accepted the formatted code. The following three sections

discuss the communications channel, data stream conformation,

and code generation for this instantiation.

4. 3.1 Communioations Channel

The experiment used the seven-layer 110 061 reference model,

the ISO 8473 Connectionless-mode Network Protocol"'5 (CLNP) and

the Trivial File Transfer Protocol',' (TFTP).

69

4.3.1.1 C€oUaatioaless-o04o Network 'rotoool (COIP)

The 130 8473 CLUP provides network-level connectivity.

Residing at level 4, the transport layer of the 05I seven-

layer model"' provides end-to-end communications. The latest

international standard network protocol, the Government Open

System Profile (GOSIP)1"e maidates CLUP. CLUP identifies and

categorizes the method to perform functions within the network

layer, provides a uniform structure and describes which

protocols provide the 01 network service.

4.3.1.2 The Trivial File Trausfer Protocol (Y2r)

TFTP is a small, easily implemented protocol that transfers

files at the application level"'. For example, some diskless

UNIX client machines use TFTP to load their operating

systemn20 . Diskless workstation manufacturers can place TFTP

in many platforms read-only memory (RON) to bootstrap the

system when the machine is on. TFTP's advantage is that it

allows bootstrapping code to use the same protccols as the

running systems1 2 . Its features are limited to reading and

writing files from a remote server. Any transfer activates a

90

request for connection to read or write a file. If the server

authorizes the request, the connection is opened and the tile

im sent in 512 byte packets,

4.3*2 Data Str• m coarormt oa

The target host accepts the rogue code as normal network data

because the LAWN module had formatted it properly for CIMP and

TFTP.

4.3.2.1 CLUP Data Stroam

The two CLMP protocol data units (PDUs) that transfer data and

report errors are the data protocol and error report PDUs.

DPUs contain octets (bytes) that are numbered sequentially

starting with number one. When a data PDU is discarded, an

error report PDU is generated which identifies the PDU that

was discarded, why it was discarded, and where the error

occurred, Both PDUs have five parts1 22 :

1. the fixed part

2. the address part

3. optional segmentation information part

4. optional switches part

5. optional data part.

91

Figure 21 shows a data PDU's structure.

An error-report PDU's structure is not shown.

...... ... I.+•

S... .-.l•

Si'

ri~e 1. 1aaWoo.lDt gi I•

Addm Pat ...- . -0............

bltruesem

II
Figure 21. Data Protocol Data Unit (100)

structure

92

Both PDUs are padded to an integral number of octets and each

data octet is numbered. To avoid duplicating data between

sessions, each session's first octet is assigned a unique

number for the virtual connection (VC). This sequential

number starts with one. Other packets are assigned numbers

incrementally as they are transferred. These unique numbers

assure the receiving host that the data is legitimate and is

arriving in order.

4.3.2.2 wToP Data stream

The TFTP packet contains one of the following five opcode

headers:

1. Read Request (RRQ) - 1

2. Write Request (WRQ) - 2

3. Data (DATA) - 3

4. Acknowledgment (ACK) -4

5. Error (ERROR) - 5

The Read Request/Writ, Request packets have the following

format:

2 bytes string 1 byte string 1 byte

o elt1or 2 filename 0 mode 0

The filename and the mode string are zero-terminated ASCII

93

characters. TFTP supports three transfer modes: ASCII (8

bits), binary (8 bit bytes), and mail which allows it to be

integrated with electronic mail.

The data packet has a block number and a data field. The

block number starts at 1 and increases sequentially by one for

each additional packet. The data field is from 0 to 512 bytes

long. The data packet format follows:

2 bytes 1 2bytes 1 n bytes

"opcde-3" block I J ata

The acknowledgment packet acknowledges all but termination and

timeout packets. The receiver must acknowledge each packet

individually block #. The acknowledgment packet format

follows:

2 bytes 2 bytes

opcode"4 I block I

The error packet contains an integer which indicates the error

type:

0 - <not defined>

1 - <files not found>

2 - <access violation>

3 - <disk full or allncation exceeded>

4 - <illegal TFTP operation>

"94

5 - <unknown transfer ID>

6 - <file already exists>

7 - <no such user>

The error message, like all the other strings consisto of

zero-terminated ASCII characters that explains the error's

nature to the user. The error packet format follows:

2 bytes 2 bytes string 1 byte

opcode-5 rrorcode en-mug 0I oo,,,i,-f, -Or o= i

4.3.2.3 Coding Characteristics and nyuohronisation

To ensure that the rogue code "looks-like" the code it is

replacing, CLNP and TFTP code characteristics are coordinated

with their synchronization.

CIKP packets contain 512 octets. Synchronization is every 500

as, and priority codes handle contention. The priority

parameter's value indicates the relative priority of the PDU.

Priorities vary from 0 (the default) through 14 (the highest).

A checksum octet, applied at the source node and authenticated

at the Cestination node, assures data integrity. The checksum

95

is computed on the entire PDU header, which includes the

segmentation* and options information if available for a data

PDU. For an error-report PDU, checksum includes the reason

for discard as well.

CLNP requires positive acknowledgement for all of the data it

sends. If the destination or receiver does not acknowledge

data integrity witnin a specified timeout period, the sender

will retransmit the data. The sender retransmits the data for

some number of iterations before it resets the connection.

The length of the timeout period is based on packet size of

512 octets, specified in increments of 500 ms. For example,

the timeout period is 500 as for each packet with five

retries133. The receiver discards duplicate packets.

The size of a TFTP packet is 512 octets. Synchronization is

every 500 as. Each TFTP data packet is assigned a block

number which is assigned consecutively starting with one.

Each data packet contains one data block which must be

acknowledged with an acknowledgment packet before the next

packet in sent. If a pavket gets lost enroute, the sender can

Used when the size of the IDU is greater than 512

octets.

96

transmit the packet for a set timeout period of 3 seconds.

After 3 seconds, the connection is terminated. The connection

is reset also after a preset number of retries. The receiver

discards all the duplicate packets.

4.3,2.4 Transmission Frequency

Determining the transmission frequency was unnecessary because

the intruder successfully inserted the rogue code message as

the first packet.

4.3.3 Uxperiaeut Resources

Analogous to the required hardware for the generic abstract

model discussed in chapter 3, the experiment resources

consisted of a DOS-based computer system and the LAWN module

which contained a microprocessor and a radio transceiver that

sent and received data via radio signal. The module served

the same purpose as the CHRIS and the transceiver from the

abstract model. The configuration was comparable to a LAN and

can be adapted to a WAN using repeaters or more powerful

transceivers. The workstations were connected via RF modems

to provide the physical and link-level connectivity.

97

For purposet of this experiment, the two authorized hosts are

named Aaron and Bill and the unauthorized user is named

Intruder.

Figure 22 provides a system overview of the network.

Figure 22. Hardware lystem
Overview

The three system's hardware configuration follows.

1. For the computing system

"* Host Bill is a Packard Bell IBM-compatible computer

system with a 12 MHz Intel 80286 CPU, with two 5

1/4 inch floppy disk drives, 640K of RAM and a VGA

monitor.

" Host Aaron is a BragL IBM-compatible computer system

with a 25 MHz Intel 80386 CPU, with a 5 1/4 inch

high density floppy disk drive, 3.5 inch high

98

density floppy drive, 80 Mbyte hard disk, 640K of

RAM and a super VGA monitor.

* Host Intruder is a Zenith-150 IBM-compatible

computer system with a 4.77 MHz Intel 8088 CPU,

.with two 5 1/4 inch floppy disk drives, 640K of RAM

and a CGA monitor.

2. The LAWN Module connects the three computers to the

network wirelessly, using high-frequency spread

spectrum radio transmissions which distribute the

transmitted data across multiple frequencies"'.

Spread spectrum uses a pseudorandom sequence generator by

adding from 10 - 1,000 bits to the signal. Spreading the bits

results in a new signallzs which is distributed over a wide

range of frequencies for transmission. This signal is then

reduced to the size of the original frequency at the

receiverz2 . See Figure 23 for LAWN specifications.

99

'I MarR-R2.. b, Reqmq -•-.8•f.z

', SpeW-19MO* s- Trwmipow- 20 fts
o, Mo&Aft -*me Spmctm o. ,Aem -htmel

WP roe- MW.F'P Repeelf- 2 per paM

SDme -P by 4' by 2' V NOt- 16oz

' Centm - Caft SMe Mu" Acces (
C bMlde Bukd"nos - 10.000 sq. ft

• RnIn olens - 500 IM

Figure 23. Lawn Specifications

It is easy to install the LAWN module. For example, it weighs

16 ounces, is six inches long and two inches wide. It

includes all the software necessary for electronic mail, file

transfers and neripheral sharing as well as AC power adapters

and 9- and 25-pin RS-232 serial port connectorB. The module

is easy to install, easy to use, and easy to move. When the

user plugs in the module into the serial port of the computer,

the power source executes its software.

100

The module has four lights on the front panel which indicate

the LAWN's status (Figure 24). A su-umary of the four

indicator lights follows:

0

TMW
0M

0

0

Figure 24. LAWN 8ohematic

1. The red POWER light indicates the module is receiving

power. This light blinks when the module is receiving a

message.

2. The green TRAFFIC light signifies that the module is

in use.

3. The green CONNECTED light indicates that the computer

is communicating with another machine.

4. The green TRANSMIT light indicates that the computer

is sending data to another machine.

101

4.3.4 Code eoneration

Because the time period when the intruder can inject code

during a transmission is limited, he used a packet size rogue

code of 512 bytes and followed this three step methodology:

1. Initialized the hosts to transfer files.

2. Executed a normal file transfer.

3. Inserted the rogue code during file transfer.

4.3.4.1 Initialising Rosts to Transfer Files

The author initialized the three computer systems, host Aaron,

host Bill, and host Intruder, by connecting the LAWN modules

to each system via the RS-232 serial port connectors. He

inserted two 5 1/4" diskettes in each system's drives A and B

and typed the <start> command on the command line in drive A

to initialize each host. Initialization occurs when the

applicable software programs are executed.

Initialization ensures that the system is set up to perform

its function, such as identifying each specific host on the

LAN, ensuring that the peripheral device controlled by the

driver is present and functional, and processing the

communications between the application and the computer LAWN.

Initialization consists of the following four steps:

102

1. Set hostnawe

2. Assign packet drivers

3. Initialize CLKP network layer software

4. Initialize TFTP software

The system must be initialized for file transfer. See

Appeadix I for the batch code for this initialization.

4.3.4.1.1 Set Mostuane

First, the author assigns each computer system a hostname so

that the network can uniquely identify each system. The

commands to set this parameter are:

1. For host Aaron => SET HOSTNAME-Aaron

2. For host Bill ==> SET HOSTNAME-Bill

3. For host Intruder =>SET HOSTNAME=Aaron

(the imposter host is masquerading as host Aaron)

4.3.4.1.2 Assign Paoket Drivers

Then, to provide the link layer connectivity, packet drivers

for each host were assigned in accordance with each machine's

specific hardware configuration as discussed in section 4.3.3.

103

For each specific host, the following parameters* were used:

1. Host Aaron F-> For COrI: lawnslip 0x65 -h 6 3 Ox2f8 19200

2. Host bill -m> For COX3: lawnslip 0x65 -h 6 4 Ox3f8 19200
(COMl and CO2 were already being used)

3. Host Intruder-> For CO!1: lawnslip 0x65 -h 6 4 0x3f8
19200

4.3.4.1.3 Initialize CLNP Network Layer Software

Second, the author initialized the CLNP network layer software

for each system by executing the command <clnptsr>. The CLNP

software is a TSR memory resident program that provides

telecommunications and information exchange between systems.

See ciI.ationUY for the CLUP code.

4.3.4.1.4 initialise Mi P Software

Thirdly, the TFTP software, which contains both server and

client processes is automatically initializes when it executes

a file transfer beginning with the command <tftp> for a

"Usage:
LAWN8LIP C-n] [-d] C-w] packet int no [-h] [-p aount] [-t

count] [driver class] [int..no] [io-addr] [baud rate]
[send buf Sime] [recv buf size] [data butasoie]

-h enablos hardware-handshaking
-p modifies limit bafore polling mode used
-t modifies the timeout for dallying after last

character.
The driver clams could be SIXP, KXIS, AX.25, or a

number.

104

bonafide host or <bftp> (bad file transfer protocol) for an

intruder host. B1TP is a modified version of TFTP that allows

the host intruder to monitor all traffic and insert rogue code

in the first packet sent to the receiver host. This completes

the hosts' initialization process.

4.3.4.2 Rxeouting a normal Pile Transfer

To ensure that the RF modems were operational and that the two

friendly hosts could communicate, the author sent a file from

host Aaron to host Bill- he enters a "request wait" command at

host Aaron by invoking <tftp> as follows:

Typed from host Aaron: <tftp>

At Host Bill the author requests the file Ocrc.oxe" from host

Aaron and renames it "test.exe", as follows:

105

Typed from host Bill: <tftp -h Aaron -g crc.exe test.exe>"

The TFTP specifies that the TFTP protocol is to be used to

communicate between hosts Aaron and Bill. The second and

third parameters, -h Aaron, specify Aaron as the source

address. The remaining parameters request the file <crc.exe>

be transferred from host Aaron to host Bill and renamed

<test.exe>. To verify that test.exe is an exact duplicate of

crc.exe, the author conducted the following three tests: a

file size test usinr. the DIR command, a CRC, and a byte-by-

byte comparison. The "DIR" command shows that the files have

the same size - 327? bytes. A CRC via crc.exe established

that the CRC values for both files were identical - 5B A2 for

crc.exe and test exe.

Where:

•Usage:
Without -h, -p or -q, Server Operation
Client operation sust supply either -h hostuame or -a
address, vith
-p local filename remote filename to put a remote file or
-g resotet filename localffilename to get a remote file.

(Option parameters with (default settings)] as follows:
-r (5)] Retry attempts before giving up
-s (512)] PDU data sins

[-u (49) TTP protocol selector #
E -f (1)] Fragmented PDU's Permittef, No = 0, Yes = 1

-c (0)] leader Cheocksum Requested, No = 0, Yes = 1
-e (1) 1 Irror Reports Requested, No = 0, Yes = i

C -d (0) 3 Debug level, O0none, lsome, 2-detailed

106

aroe.ze is the file that was sent by host Bill

testoeze is the renamed file crc.exe

In addition to the CRC check, although there was a 1 to 2"

chance that two files will have the same CRC value' 2 (using

four characters), the author conducted a byte-by-byte

comparison using the DOS COMPARE cowmand for further

verification as follows:

A:\>comp crc.exe test.exe

Comparing CRC.EXE and TEST.FXE

Files Compare OK

The COMPARE command showed that crc.exe and test.exe files

were the same. Therefore, the author could successfully

transfer files between the two friendly computer systems.

To understand how to insert rogue code during a file transfer,

it is beneficial to axamine the data flow between the machines

during file transfer. First, host Bill sends v read request

for the file "crc.exe" from host Aaron. Host A&ron opens the

file and reads the first block of 512 bytes into a buffer. A

PDU is then created using the addressing information in host

Bill's read request. A sequence number of 1 is assigned to

the first data block which is sent to Host Bill (Figure 25).

107

- 4 -- -- I

Figmo 25. lost haron Sends a
message to most bill

Upon successful receipt of the data, host Bill sends an ACK

PDU with the same sequence number, seq. #1, to host Aaron

(Figure 26).

#W~~~m ftanse "A

rigure 26. Rost Bill
Acknovledges Root
Aaron's Message

108

Host Aaron, upon re.iving thjs ACK, continues to send blocked

packets with sequentially increasing sequence numbers until

the entire file is transferred. If an ACK is not received

within a specific time, the packet is retransmitted until

either an ACK is received or a tineout has been reached. If

the packet is not in the correct format or the checksum in the

network protocol or a CRC in the LAWN protocol does not match,

the packet is rejected.

4.3.4.3 Inserting Roque Code During a File Transfer

At this time, the intruder inserts rogue code into the

friendly host's data stream. To invoke the protocol, the

imposter, masquerading as host Aaron, with the HOSTNAME-Aaron,

execute* <bftp>. This command places the imposter host in a

monitoring mode, ready to insert its code as soon as it

detects a file transfer. No operator interaction is required

for this process. To insert the rogue program, host intruder

creates a spurious PDU whose format is identical to the

legitimate system's PDU format; the spurious PDU must pass the

CLNP network layer checksum, pass the link layer CRC test, and

have the same sequence number and format as the good packet.

The intruder uses the same procedures as set forth in

paragraph 4.3.4.2 to effect a normal file transfer. As host

Intruder detects a file transfer taking place, it immediately

sends its "spurious" packet to the receiver host, host Bill

109

(Figure 27)

rmmy

ligUeO 27. lOSt Zatruder's
Packet 1ceaohes lent
3111 First

Host Bill accepts the bad packet and sends an ACK to host

Aaron indicating that the first packet has been successfully

received (Figur • ...

MWM

Figure 27. Rost r111
PokaovletIgeas ost
catruder's peeket
to lost i ron

110

The above operational steps took place in this order:

0 Host Bill sends tile request to host Aaron.

I Host Intruder detects that a file
transfer is to take place.

2 Host Intruder sends its prepared rogue packet,
spurious packet #1 to the receiver host, host Bill.

3 Host Aaron prepares its message for host Bill
and sends its first packet bonafide packet #1.

4 Host Bill receives rogue packet, spurious packet #1
from host Intruder.

5 Host Bill receives host Aaron's packet,
bonafide packet #1 and discarde it, because
has already received packet #N. No ACK is sent
for rejected packets.

6 Host Bill acknowledges receiving packet #1 (really
sent by host Intruder) to host Aaron

7 Host Aaron receives acknowledgement for (rogue)
packet #1 (sent by host Intruder), and then
continues to send the other packets

Host Intruder will almost always beat the sender host because

the sender host has much more to do than the host Intruder to

prepare a packet for transmission such as finding and opening

the file and preparing and sending PDUs. To illustrate this

point, the host Intruder was the slowest machine with a 4.77

MHz CPU clock speed; the sender, host Bill, was the fastest

computer with a 25 MHz CPU clock speed.

The following paragraphs describe why the intruder's packet

got to host Bill before the sender's packet.

111

DOS programs use a unique, 16-bit value called a file handle

to perform file operations"2 '. The file handle identifies the

file currently being accessed and the operation to be

performed, such as to open or create files and subsequent

functions to perform other file operations such as reading and

writing. The following describes the timeline and steps

required to transfer files:

0 Receiver host Bill requests a file from

the sender host Aaron.

1 Sender host must first locate the requested

file via the find first file function,

Interrupt 21, Function 4EH.

2 The sender host opens the found file

via the open file function, Interrupt 21,

Function 3DH.

3 Sender host places the file in an internal

buffer to prepare it for transmission and to

prepare the data PDU.

4 Sender host transmits the data PDU to

the receiver host.

The host Intruder does not have to follow these steps with its

rogue code packet already prepared, as soon as it detected a

file transfer operation request, it immediately transmitted

112

its prepared packet to the receiving host. The intruder can,

therefore, prepare the rogue packet in advance and skip the

file I/O.

An examination of test.exe demonstrates that the insertion was

successful. Performing a DIR command, the file size is the

same as the original file, crc.exe: 3273 bytes. But, a CRC

check shows that the CRC value is different, DD 9Y. Also, a

byte-by-byte comparison using the DOS COMPARE command shows:

A:\>comp crc.exe test.exe

Comparing CRC.EXE and TEST.EXE...

Compare error at OFFSET 0 Compare error at OFFSET 5

filel - 4D fel 81 W I

file2 - 8B f Le2 - 8C

Compare error at OFFSET I Compare error at OFFSET 6

f ±1.1 - 5A fuell 0

fi1U2 - 2 f Le2 - CA

Compare error at OFFSET 2 Compare error at OFFSET 7

f iel a C9 fi1el - 20

ftle2 - 0 file2 - 81

Compare error at OFFSET 3 compare error at OFFSET 8

f11*1 - 0 fi1.1 - 0

file2 - 89 file2 -DA

Compare error at OFFSET 4 Compare error at OFFSET 9

f11e1 - 7 f*el - 0

file2 - 40 file2 - IA

10 Miumatches - ending compare

113

The COMPARE command shows that the two files crc.exe and

test.exe are different only at the program's first ten bytes -

where the rogue code was inserted.

When host Bill executes the infected test.exe, it displays the

messaye, "This file has been infected with a harmless computer

virus! This file is no longer good".

The "bftp" software notifies the rogue operator that the rogue

program was transmitted as well as how many packets the sender

host transferred. See Appendix 2 for the transmitted rogue

program's code.

4.3.4.4 Nxperinent Summary

The above three sections describe how a rogue program is

inserted into a wireless communication stream.. The imposter,

host Intruder, masquperaded as the sender host, host Aaron, by

creatLng packets that look like they came from host Aaron.

The imposter monitored all traffic between the two friendly

hosts, Aaron and Bill. Once the imposter detected that a file

transfer was to take place, it immediately forwarded its

spurious rogue code packet to the receiver host Bill, which

acknowledged to the sender host Aaron that the packet was the

114

bonafide sender's first packet. Host Bill, upon receiving

host Aaron's legitimate first packet, discarded it as a

duplicate. Host Aaron, upon receiving an acknowledgement for

its "supposed" first packet, continued to send the rest of the

packets. Therefore, host Intruder was able to insert

successfully its rogue code into the file that host Aaron sent

to host Bill. The next section discusses the defense measures

that hosts Aaron's and Bill's users could have taken to

minimize the host Intruder's threat.

4.4 Defense Measures

For purposes of this dissertation, only the rirst two defense

measures of the seven that Chapter 3 discussed, CRC and

checksum, were used in the experiment to demonstrate

successful detection of rogue code insertion. The DIR command

shoied that intruder modified the original file, crc.exe

because the infected file, test.exe, was not the same size as

the original file. The checksum, COMPARE command, reinforced

the fact that the two files were not the same via a byte-by-

byte comparison. The CRC clearly showed that the two files

were different lengths.

115

4.S Cost-Benefit Analysis

In this section, the formulas provided in chapter 2 are

implemented with examples to determine whether it would cost

more to implement controls or to accept the anticipated cost

of the loss.

To implement the cost-benefit portion of the model to

ascertain the cost-benefit ratio, the following three

parameters must be computed:

1. the accessibility of computing systems to

rogue program attacks, access vulnerability

likelihood (VL)

2. the cost of applying antirogue products

((the yearly cost of safeguards (CSG) which enhances

product effectiveness))

3. the basic cost (BC), recurring cost (RC) and

the expected yearly loss of the computing system

4.5.1 Access Vulnerability Likelihood (VL)

Using the formula from page 75,

B V

VL = (V/T)*[• (Fi + E (Fi * F 1)))

116

Where:

T - topological factor
V = vector factor
Fj = functional factor or Fid * Fib
F±,= penetration likelihood
Fih= havoc/damage likelihood
i - index
j = index
n = number of subsystems (nodes) that can be

carriers

three computing systems were used consisting of 9 links as

shown in Figure 29. The topological factor is 9, since there

is a total of nine links.

4 -7

m2 C

Figure 29. Example Subsystem

The vulnerability, based on the vector analysis contribution

was .66 because 6 of the 9 links can carry the infection.

117

The likelihood of the three printer links becoming carriers

was remote. Dividing the vector contribution by the

topological contribution and multiplying it by the function

contribution of each of our subsystems determined the VL. The

function contribution was determined from the following matrix

which contains a number of safeguards with associated

(subjective) weights assigned specifically for purposes of

this dissertation (other researchers nay assign different

weights depending on their own experiences or purposes):

Functional Factor Matrix

USD0r O "FSGUARDS WRIGHTED VULNERABILITIES

Penetration (Fr) Damage(1 k)

1. CRCs ,50 .50
2. checksums .30 .30
3. encryption .50 .10
4. digital signatures .10 .99
5. incorporated safeguards .30 .99
6. SW or HW mechanisms .10 .10
7. combination of the above .10 .10

For example, in the case where 3 computing systems had a total

of 9 links, 6 of which can be carriers, assuming that

computing system-A is using software or hardware safeguards

with its respective weight where F, - (Fid) * (Fib) = .10 * .10

= .01, and computing system-B is using CRCs where Fi = .50 *

.50 - .25 and computing system-C is using no safeguards, Fi -

.99, to determine VL (see Figure 30), one calculated:

118

For a-is "L1~~[0+.1*a)(0*S) .015

For a-2& VL3-6(24.5*0)(2*f) .330

For U1-39 vL3.E Cl..-'0)(9~2) .425

fleexfoze, VI. VL(1)*VL(3).VL(3) -1.17

4aJa

Figure 30. Computingq System.
vulnerability LiKelihood

119

Hence, the VL for the three computing systems is 1.17, meaning

that there is a lesser chance than the mean* that the network

may be infected. Converting VL to a percentage for use in

forthcoming calculations, 1.17 approximates to a 20%

vulnerability. This percentage is determined by calculating

the lower bound (i.e., full protection which is defined at

99%) and the upper bound (no protection at .01%) vulnerability

for this network, and then normalizing the upper bound. For

the above three computing systems, the lower bound is
For 3.1: v(1 .. 0.O (.0l'.01)1(.O2*.01)J - .0067

For -3-2: L()-.46[.o1-(.0l*.o1).(.o1'.o1)] - .00o1

F0r h*3: V(3)-.*6 [**O 1(J2.l)(.01'.0i)J - .0017

TheOioze., VI - VL(J.+VL(2)(VLC3) - .0202

The upper bound vulnerability is
Fo0 r -1: VL(t)-.6[.9 (.C.9 .).(.g .*.)J - 1.947

For m-2. L(2)-.66(.99.(*99*.9).(,g9..99)3 " 1.947

Fo0 n3. V(3)-.16(.99.(.g9*.gg).C.9**.99)] - 1.947

TbOZOfore, V. - VL(I).VL(2))*V(3) - 5.0641

Therefore, the percentage equivalent of VL is determined by

normalizing the lower bound to 1, such that 1.17/5.841 = 20%.

Hence the accessibility vulnerability likelihood is 20%. See

the following table for an analysis of VL as the value of n

doubles, while keeping all other parameters constant.

The mean is determined by averaging the VL for the
three subsystems vith no vulnerabilities (l.e, F(i)=.o0;
heone, VL=.0202) and with full vulnerabilities (i.e.,
1(i)=.99; hence, VL=S.841). Therefore, the mean=2.93.

120

3 1.17 .0202 5.841 20 X of nodeUI - I tn e

6 2.34 .0404 11.682 20 - Nesus* of Vulnxbility
12 4.68 .0808 23.364 20 ,S-L-"Z Bou
24 9.36 .1616 46.728 20 1 -Nrl" valu
48 18.72 .3232 93.456 20
96 37.44 .6464 186.912 20

As expected, the normalized VL does not change when n is

doubled and all other factors remain the same. Hence, adding

more nodes to a network does not change the percentage of the

VL as long as all the other parameters remain the same. There

is no difference in the VL percentage when adding or

subtracting nodes when all other parameters are constant.

4.5.2 Yearly Cost of safeguards

: determine the yearly cost of safeguards, the following

uation was used:

Yearly Cost of SafeGuard (YCSS) = (CPT + N + U + L + E)

WI, re:
C - the nuebox of scans/checks

P - the loae of employees' pzoductivity

T - the tim to pezfozm the @Can

K - the cost foz key management

U - the cost foz jneuatlation end updates
- Vi (the time to inmtall/upd&te) * us (the employees costa)

L the cost for liaessing/puZahasing ot product

2 the cost fox ezO iCating detected rogue program
2 Uc (the time zequlxed to clean damaged flMes) * RE (time to zestozo damaged file@) * no

(employeem' time in1.-olved)

121

For example, to calculate the safeguard costs, it was assumed

that a cryptographic mechanism and a scanner/eradicator were

installed such as the RSA algorithm and SCANV that provided

99% protection, as per the Fumntional Factor Matrix.

COST FOR SAFEGUARDS FOR COMPUTER SYSTEMS1

Ilumber of ftSe (CI, 250 (scan done after each bootup • daily)

Loass of nm1love TIe (P) 1 .27 (0 $16.00 PIz hour - $.27/uin)

tin to Peifor scan (T) t s min (for 0o Myte 1M, 25 lz)

Myv ganaemont Coasts M•z $50.00 (one time cost of equipMent)

Coast for Installation (U1: $24.00 (one hour for crypto, 1/2 houT fox scan)

Coast for U•atels: $40.00 (4 upd&tea per year 06 $1000 p"T smca)

Coal foxr mi•ov , $32.00

Cost fez Llcon• (LIW $35.00 (Per year)

Coat to Uzadlcate (31, $.025 (ascannzer vil autamatioally eradicate v/permiaiison - aPpizx s sec)

Cost to atosexot $.54 (assame back-ups available - 2 min to get them)

Cost of awlaeel $4.00 ("aumsm no major da•ge - 15 min to back-up aspev fic files)

Yearly Coat of Safeguards = (250*.27*5+50+96+25+4.55)

M $513.05

Hence, the yearly cost of safeguards was $513.05 per year for

each subsystem, which may be a reasonable cost depending on

the importance of the data to be protected. The above costs

were obtained from citations"0 -'31.

122

4.3.3 Basic and Recurring Cotst

To determine the total cost of each subsystem without any

incorporated defensive controls:

Total Cost - S(BC + RC)

Where:

sewig Gst Me) i N

Where XVM * No nNi + Ni

Nb - hardwaue costs

so - software costs

mi - installation costs

Nb * network connection costs

aef'tgura "mat (30) * R

WheteN* a N3b * t

Nb *nbp (Rh. Nb:) - Initiation cost

Abo *coot to establish conmnication

Nbz cost of the response time

UbP n* b of parts

Rt -cost for data tianmiasimon

ZXAM*G Assuming 3 computing systems connected via

RF as in the previous example:

NONRECURRING COST RECURRING COST

hardvare + softwaze + install + connection call initiation * t•ansIaision overhead

$ 3000.00 + 5000.00 + 0.00 4 410.00 .035 + .07S

123

BDasi Cost - $8458.00

Recurring Cost - $.10

Whores Foz l"sic (Nonrecuzzing) costs

hardware coat - $3000.00

software cost - $5000.00

install cost - one e*ployee working at $16.00 poi hour fox 1/2 houl

connection cost - the cost of the wileloes LO c•oPoMets, such am the LMWl

- $450.00

Therefore, Basic Cost - hh+N-+Ni+N, - $3000 + $5000 + $8 + $450

= $8458.00

Where: For lecurting Coats

call init coot - one employee working at $16.00 peo hour fez 2 socond forx

overhead (IUbo-.010) end for 3 second@ tot respond (Rbz-$.015)

(0 $.005 per second)

- $.025

tzanm.lt coat *one emlployee working at $16.00 pez hbut foz 1S seconds

fox a SOK file t•rasmitted at 41 bps

$.075 (asuming one post (Rbp-l))

Therefore, Recurring Costs - R - 1• + Rt - Rbp(1to v 1R) + R,

- 1($.010 + $.015) + $.075

- $.10

Hence, Basic Costs plus Recurring Costs - $8458.10 per

subsystem. The total system cost - 3 * $8458.10)

$25,374.30.

124

At this point, the ratio of the expected loss with no

safeguards to the expected loss with safeguards for each

subsystem was calculated as follows:

Loss-R&tio=(VL*(BC+RC)) / ((VL*((1 - %SAFE)*(BC+RC)))+CSG)

Where

VL*(BC+RC) = the expected loss if no

safeguards are implemented

(VL*((l - %SAFE)*(BC+RC))+CSG)= the expected loss with

safeguards implemented

%SAFE - the percentage of

protection provided by the

safeguards (its effectiveness)

Therefore, the Cost-Benefit Ratio for an unprotected subsystem

was calculated as follows:

Cost-Benefit Ratio = BSMG / CSFG

Where:

BSMG - Benefit per subsystem from safeguards

= the expected loss if no safeguards

are implemented minus the expected

loss with safeguards implemented

= (VL*BC) - (VL*((l - %SAFE)BC))

CSFG Cost per subsystem for safeguard

- CSG

125

Recalling that the VL - 20%, the expected cost of loss without

safeguards to the expected cost of loss with safeguards is:

Io6t4d Cost of oam UItweL t bedeusef - (.3o*e445.10)

ieote4 Got o9 Iee UL9 Iaiauah * ((.W0a((l- .wt)*11456.10)).$13.O)

$ 535.97

Lose Ratlo (.230*1SI.l0) / ((."1*((1-.9s)'S&$1.lo))*sl3.0S)

- 161.63 / 525.97

-3 1

The Cost-Benefit Ratio for an unprotected subsystem was

calculated as follows:
Expecte" damage pot subsystem due to access vulnebability likelibood of .20 (frcn above) is - $1491.63

(which in the expected domage per subsystem WIT"OuT vatoguards)

ixpecoted damage per subsystem with samquazda (fzom etive) I $3529.97

Thorefore a

Benef it Paz subeyesem txom safeguards (mM) - (Expected dgoo) (upeod damage v/safeguarfd)

- 1691.62 -529.97

- $1161.65

Cost per subsystem fox Safeguard (CiFO) - $613.05

Cost-Deaefit Ratio (fox each subsystem) - am / C8or

- (1161.65) I (513.01) - 2.3

Therefore, the 0ost-Deangitt Ratio - 2.%

"2/1

126

These figures demonstrate that for every dollar spent on

safeguarding an unguarded system, the user will avoid spending

approximately 3 dollars (loss ratio - 3/1). For every dollar

spent, the user will save 2 dollars (cost benefit ratio -

2/1). If the user does not select this wise choice, then

according to the vulnerability estimate, he could end up

spending an additional $1161.65 due to rogue program infection

and associated losses.

4.6 Attack Methodology Variations

In the above experiment, the intruder inserted rogue code into

a targeted host via RF by replacing the first valid packet

with a rogue packet. Insertion can also be accomplished by

replacing any packet in the data stream; however, it is more

difficult to insert rogue code successfully into other data

stream locations because the timing sequence and packet order

become more important. After the first packet, the rogue code

could accomplish many different tasks such as deleting files,

modifying programs, capturing programs or propagating its

rogue code to other computing systems. In all these cases,

the code would be more complicated and would require more than

two packets. Moreover, the intruder host can masquerade as

the receiving host as well as the sending host, thereby having

the capability to eavesdrop on transmissions. The intruder is

127

able to masquerade as the receiving host assuming that the

intruder knows the hostname of the bonafide receiver host as

well as using the same hardware with the appropriate settings.

Acknowledgments from the intruder are not a concern because

the protocol will discard any duplicate acknowledgements.

Also, the rogue code can accomplish many other tasks, but the

more tasks it pursues, the more rogue code required, the more

chances of something going wrong and, hence, the more prone

the rogue code is to detection.

4.7 Conclusions

This dissertation demonstrated that unprotected wireless LANs

are more vulnerable to rogue program attack than traditional

LANs. This vulnerability was demonstrated by developing and

instantiating an abstract model of the rogue code insertion

process into a targeted wireless communications system that

used RF atmospheric signal transmission.

The model was general enough to apply it to widely used target

environments such as the UNIX, Macintosh and DOS operating

systems. In this experiment, the model was instantiated on a

DOS-based system that used a Local Area Wireless Network

(LAWN) connection.

128

This experiment to instantiate the abstract model in chapter

3 to insert rogue code into a targeted host was successful.

The author used the ISO 8473 Connectionless-mode Network

Protocol 1" (CLNP) for network-level connectivity, and the

Trivial File Transfer Protocol 1 " (TFTP), as its basic

transmission protocol through applications level connectivity

to insert the rogue program. Three IBM PC-compatible computer

systems were connected by RF LAN, using O'Neill

Communications' Local Area Wireless Network (LAWN) modules.

The author copied a file between the two legitimate computer

systems to ensure that the file transfer software worked. The

third spurious computer system, the imposter, then inserted

rogue code into the data stream as the file was being

transferred a second time between the same two, legitimate

computer systems. The innocent recipient executed the rogue

code when it executed the infected file, thereby illustrating

the rogue code's successful insertion. Two defense measures,

CRCs and checksumming, to prevent rogue code insertions via RF

were examined.

129

The technique to instantiate the abstract model, ising

specific protocols (CLNP and TFTP) and O'Neill's (iJWN)

wireless communication modules, may be generalized. The

principles and the technique used remain valid for other

protocols and other communication modules. Inserting rogue

programs can be more complex and sometimes near impossible

with current technology, but with unlimited time and

resources, it can be done.

130

Chapter 5 CONTRIBUTIONS, CONCLUSIONS AND IXPLICATIONS FOR

FUTURE RhS3ARCN

5.1 Contributions

Wireless LANs are becoming more arnd more popular. This

popularity increases the opportunities for intruders to infect

computing systems via RF. The hardware and software

telecommunication components, the specifications for each

component and the technology to inject rogue programs via RP

communication channels are proven and readily available.

Unauthorized users can purchase "Telecommunication Saturday

Night Specials" at many electronics outlet to insert rogue

code into a communication channel via RF surreptiously.

This dissertation makes three major theoretical and three

proof of concept contributions. The first major theoretical

contribution is the development of an abstract model of the

rogue code insertion process into a wireless network using RF.

The second major theoretical contribution is the development

of the methodology and three modules to generate rogue code

and insert it into a wireless LAN. The three modules are the

prober, activator, and trigger modules.

131

The third major theoretical contribution is the inclusion of

the VL into the abstract model. This was accomplished by

combining Fred Cohen's'3 ' and Linda Rutledge's 1" works with

the proposed topological, vector and functional factors, to

establish a computing system's VL to rogue program threats.

The first proof of concept contribution is the finding that

inadequately protected wireless LANs are more vulnerable to

rogue program attack than traditional LANe. Because of their

inherent characteristics, wireless LANs have unique security

concerns. They run not only the same risks as traditional

LANs, but they also have the additional risks associated with

an open transmission medium. Intruders can scan radio waves,

and given sufficient time and resources, they can interrupt,

analyze, decipher and reinsert data into the communication

medium.

132

The second proof of concept contribution is the demonstration

that rogue code could be successfully inserted into a target

host via RF. This will not only make the computing community

aware of wireless LANs' inherent vulnerabilities, but the

insertion will also help the community identify, analyze and

neutralize these weaknesses and defend against unauthorized

users.

The third proof of concept contribution is the cost-benefit

component of the abstract model. The component demonstrated

that it generally costs users significantly more not to employ

safeguards on their wireless LANs than to employ safeguards.

5.2 Conclusions

The value of this work is that this study can be applied to

the UNIX, NVS, Macintosh and other operating systems or other

related telecommunication spheres, such as cellular phones,

automatic bank tellers, short wave communications, electronic

warfare, and satellite manipulation applications.

Cellular phones are popular with all population sectors. By

the end of 1994, millions of people will have cellular phones

in the USA alone and thousands more will have cellular

modems3 6 . This technology has provided ample opportunity for

133

companies to make money and "would be intruders" to cause

havoc using the various methods of communicating through the

air. Some of these methods include"":

1. Cellular Digital Packet Data (CDPD), which is an

emerging technology that transmits data over cellular

networks by inserting data packets into unused voice

channels. Its main use is likely to be for short, bursty

transactions, such as mobile credit-card authorizations.

2. Circuit-switched cellular, which uses today's cellular

network to transfer connection-oriented data via a

cellular modem.

3. Mobile satellite service, which is voice and

messaging-oriented technology targeted at places without

an existing wired infrastructure.

4. Paging, which is a one-way data messaging and

broadcast technology.

5. Enhanced Mobile Radio, which is voice and data

technology.

For example' 31, UPS uses CDPD-like technology today to the tune

of 510,000 to 520,000 calls per day.

Short wave, electronic warfare"3', and satellite manipulation

applications are other areas which will become more vulnerable

as technology improves. They all function within the radio

134

frequency spectrum. For example, the FCC recent announcement

to allocate thin slices of spectrum in the 2-GHz range to

potential service providers may give unauthorized users the

opportunity to gain access for illegitimate purposes.

5.3 Puture Work

This work points out the need for more research in protocol

design. The current protocol suite* use layers to reduce

their design complexity and provide well-defined interfaces

between the layers, so that a change on one layer doesn't

affect an adjacent layer. The protocol suites are"°0 :

1. the TCP/IP protocol suite (the Advanced Research

Projects Agency (ARPA) Internet protocols),

2. Xerox Network Systems (Xerox NS or XNS),

3. IBM's Systems Network Architecture (SNA),

4. IBM ý NetBIOS,

5. the OSI protocols,

6. Unix-to-Unix Copy (UUCP).

" A protocol wAte is a collection of protocols from more
than one layer that forms the basis of a useful network.

135

Each of these protocol suites define different protocols at

different layers, such as Trivial File Transfer Protocol

(TFTP) is one specific user process whose protocol is defined

by the TCP/IP protocol suite.

Protocols provide resource sharing and interconnection;

security was not a major factor. These protocols generally do

not have duplicate packet checking, resulting in discarding

any duplicate packets. The rogue code exploited this protocol

characteristic in chapter 3 to insert the rogue code into the

communication stream of a targeted host via RF. More robust

protocols would minimize the threats delineated in this

dissertation.

Another extension of this dissertation for future researchers

is to conduct an empirical analysis of the Accessibility

Vulnerability Likelihood. This dissertation only discussed

the variability of VL as n doubles with the other parameters

remaining the same. As expected the normalized value of VL

remains the same. Further study is needed to determine the

effects of VL as all parameters vary to provide a

comprehensive perspective of how accessible networks are to

rogue programs.

136

APPENDIX I - XMITIALI.ZI&ION CODE

Initialization Cod for Rout)Argn tltart.Bat)

PATH-a: \;b: \;b: \clnptmr;b: \clnpmgc ;a: \packet
SET IHOSTkIAME-aarori
prompt thhh pg
a:
cd \packet
call ilawn

cd \clnptsr
clnptsr
cd \clripmgr

xnitialization Code for Rout Bob (Btax&.AjWtL

PATH-a: \;b: \;b: \clnptsr;b: \clnpmqr;a: \packet
SET HOSTNAME-bob
prompt $t~h$h$h pg

cd \packet
call ilawn

cd \clnptmr
c lnptur
cd \clnpmgr

Initialization Code for Host Intruder 18tart.Bati

PATH-a: \;b: \;b: \clnptsr;b: \clnpmgr;a: \packet
SET HOSTNANE-intruder
prompt $t~h~h~h pg
a:
cd \packe~t
call Ilawn
b:
cd \clnpter
c lnptsr
cd \clnpmgr

137

RP]IIDXX 2 - ROGUE PROGRoA CODE

.Text segment byte public "code"

.Text ends
Assume CS: .Text
Text seament

Label msgbegin near
db "This program has been infected by a harmless

virus",0
Label msgsend near

Virus proc near
mov bx,2
mov cx,offset (magsend - msgbegin
mOV dxcs
mov ds,dx
mov dx, offset msgbegin
mov ah, 48H
int 21H
mov ah,4cH
int 21H

virus enddp
.Text ends
.Data segment
.Data end

End Virus

138

Rndnote.

1. Dobbins, J.H., "Software Acquisition Management," Prgan3
Manager, Journal of the Defense Systems Management College,
January-February 1994, pages 2-8.

2. Hoffman, Lance J., "Rogue Programs: Viruses, Worms, and
Trojan Horses," Van Nostrand Reinhold, 115 Fifth Avenue, New
York, N.Y. 10003, 1990, page xi.

3. Denning, Peter, "Computers Under Attack - Intruders, Worms,
and Viruses", ACM Press, New York, N.Y. 1990, page xiii.

4. USENIX, The Journal of the USENIX Association, University
of California Press, Vol. 2, Spring 1989, pages 155-176.

5. Computers & Security, Elsevier Advanced Technology, Volume
9, number 5, August 1990.

6. Markoff, J., "U.S. Is Moving to Restrict Access to
Facts About Computer Virus," New York Times. Nov 11, 1988.

7. Slade, Robert, "Antivirus Contact List," Vancouver
Institute for Research into User 3ecurity, Integrity Canada,
V7K2G6, Internet address is RobertSlade@mtsg.sfu.ca, 1991.

8. Highland, H., "The Brain Virus: Fact and Fantasy,"
Computers and SecurLtu, Vol. 7, August 1988, page 367,

9. Denning, Peter, "Computers Under Attack - Intruders, Worms,
and Viruses," ACM Press, New York, N.Y. 1990, page xii.

10. Stoll, Clifford, "Stalking the Wily Hacker,"
Communications of the ACM, Vol. 31, No. 5, May 1988.

11. Dataquest Research, 600 Delran Parkway, Delran, NJ 08075
1990.

12. Hoffman, P., "VSUMX", Virus Summary List, 333 Bowers Ave,
Suite 130, Santa Clara, Ch., Dec 1993.

13. NCR Corporation, NCR WAVELAN, Dayton, Ohio, 1990,
telephone number: 1-800-225-5627.

14. Perry, D., Business Communication. Review, "Will Wireless
LANs Realize Their Potential?", Vol 23, Issue 8, Aug 1993,
page 19.

139

15. Lathrop, D., "Secturity Aspects of Wireless LANs,"
Computers and Security, Vol. 11, 1992, pages 421-426.

16. Eichin, Mark W., and Rochlis, Jon A., "With Microscope and
Tweezers: The Worm from MIT's Perspective," Cgmmunications of
the ACM, Vol. 32, No.6, June 1989.

17. Seeley, Donn, "A Tour of the Worm," The Computer Worn - A
Report to the Provost of Cornell University, Cornell
University, Ithaca, N.Y. 14853, Feb 1989.

18. Spafford, Eugene, H., "The Internot Worm: Crisis and
Aftermath," Department of Computer Sciences, Purdue
University, West Lafayette, IN., 47907.

19. United States General Accounting Office, "Computer
Security," June 1989, GAO/IMTEC-89-57.

20. Trusted Information Systems, Inc., "Computer System
Intrusion Detection," Contract No. F30602-87-D-0093, Sept 11,
7.990, page 8.

21. Trusted Information Systems, Inc., "Computer System
Intrusion Detection," Contract No. F30602-87-D-0093, Sept 11,
1990.

22. The CgOmDuter Security Alert, "Distributed Intrusion
Detection System," Computer Security Institute, San Francisco,
CA., 94107, No. 107, Ftb 1992, pages 3-8.

23. Trusted Information Systems, Inc., "Computer Syatem
Intrusion Detection," Contract No. F30602-87-D-0093, Sept 11,
1990, pages 30-35 (Appendix B).

24. Ikbd, pages 17-23.

25. Ikid, pages 1-5.

26. IWLd, pages 11-16.

27. IkLd, pages 24-29.

28. IJi4, pages 36-44.

29. IkLd, pages 45-47.

30. IlJ4, pages 48-53.

140

31. The Comnuter Security Alert, "Distributed Intrusion
Detection System," Computer Security Institute, San Francisco,
CA., 94107, No. 107, Feb 1992, pages 3-8.

32. Fischhoff, B., "The Art of Cost-Benef it Analysis", Defense
Technical Information Center, Cameron Station, VA, Feb 1984,
page 2-1.

33. Cassady, P., "Integrated Family of Test Equipment Electro.-
Optical Program Cost-Benefit Analysis", Defense Technical
Information Center, Cameron Station, VA, Dec 1990, pages 9-12.

34. Cohen, F., "A Cost Analysis of Virus Defenses," A.Qi3r
Course on Comnuter Viruses, ASP Press, PO Box 81270,
Pittsburgh, PA., 1990, pages 155-160.

35. Cohen, F., "A Note on the use of Pattern Matching in
Computer Virus Detection", Invited Paper, Computer Security
Conference, London, England Oct 11-13, 1989.

36. Hirst, J., "Eliminator - Virus Detection and Removal",
Users Manual, British Computer Virus Research Center, 1990.

37. Cohen, F., "A Cryptograph-c Checksxm for Integrity
Protection", Computers and Secv~rity, Vol. 6, No. 6, 1987,
pages 505-510.

38. Cohen, F., "Models of Practical Defenses Against computer
Viruses", Computers and Security, Vol. 7, No. 6, 1988, pages
308-323.

39. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
Mar 1987, page 97.

40. Fischhoff, B., "The Art of Cost-Benefit Analysis,"
Decision Research, 1201 Oak St., Eugene, Oregon, Jul 1978,
pages 1-1 to 4-14.

41. Burger, R., "Computer Viruses - A High Tech Disease,"
Abacus, 52nd Street SE, Grand Rapids, MI., 49508, page 13.

42. Microsoft, "MS-DOS Programmer's Reference," Microsoft
Press, Redmond WA., 98052, 1991, pages 115, 116.

43. Burger, R., "Computer Viruses - A High Tech Disease,"
Abacus, Grand Rapids, MI., 49508, 1988, page 98.

44. Ikid, pages 98-99.

141

1 1

45. Hoffman, P., "Virus Information Summary List", 3333 Bowers
Avenue, Santa Clara, CA., 95054, Dec 1993, page 5.

46. Burger, R., "Computer Viruses - A High Tech Disease,"
Abacus, Grand Rapids, MI., 49508, 1988, page 100.

47. Dettman, T., DOS Programmer's Reference, Que Co., 11711
N.College Ave., Carmel, IN., 46032, 1989, page 250.

48. Tanenbaum, A., "Computer Networks", Prentice-Hall, Inc.,
Englewood Cliffs, NJ., 07632, 1981, page 2.

49. Pfleeger, C., "Security in Computing," Prentice-Hall,
Englewood Cliffs, NJ, 1989, page 365.

50. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., 1989, page 403.

51. Tanenbaum, A., "Computer Networks," Prentice-Hall, 1988,
pages 117, 118.

52. Pfleeger, C., "Security in Computing," Prentice-Hall,

Inc., 1989, page 371.

53. .

54. PIN, Warfel and Miller Inc., Vol. 6, No. 6, July 1990,
page 4.

55. National Institute of Standards and Technology (NIST)
Special Publication 500-157, "Smart Card Technology: New
Methods for Computer Access Control," Computer Science and
Iacnoj~gy. US Department of Commerce, Sept 1988.

56. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., 1989, pages 258-269.

57. Ames, S., "Security Kernel Design and Implementation: an
Introduction," C, Vol. 16, No. 7, Jul 83, pages 14-23.

58. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., 1989, page 276.

59. NCR Corporation, NCR WAVELAN, Dayton, Ohio, telephone
number: 1-800-225-5627, 1990.

60. Altair Product operations, 108 East 91st Street, New York,
NY., 10128, telephone number: 1-800-233-0877.

142

61. O'Neill Communications, Inc., "The LAWN," Thanet Circle,
Princeton, NJ., 08540, telephone number: 1-609-497-6800.

62. Proxim, Inc., "ProxNet," Mountain View, CA., telephone
number: 1-415-960-1630.

63. Telesystems SLW Inc., "Arlan," Don Mills, Ontario.

64. California Microwave Inc., "Radio Link," 985 Almanor Ave,
Sunnyvale, CA., 94086, telephone number: 1-800-772-5465.

65. The Black Box Corporation, "BestLAN,"1 Lancaster, PA.,
telephone number: 1-412-746-5565.

66. IBM, Marketing Division for Wireless LANs, telephone
number: 1-800-426-3333.

67. Kramer, M., "Infrared Schemes Offer Alternative to Radio
LANS," PC Week Magazine, June 3, 1991, page 93.

68. Tanenbaum, A., Computer Networks, Prentice-Hall, Inc.,
Englewood Cliffs, NJ., 07632, 1981, page 275.

69. Proc. APIPS NCC, 1975, pages 203-215.

70. Bracsig "Captain Midnight Strikes; Preempts HBO with
Message Decrying Scrambling," Washington D.C., July 28, 1986,
page 71.

71. USENIX, :the Journal of the USENIX Assogiatio, University
of California Press, Vol. 2, Spring 1989, pages 155-176.

72. Burger, R., "Computer Viruses: A High Tech Disease,"
Abacus, Grand Rapids, MI., 1989.

73. Communications of the ACM, Vol. 32, No. 6, June 1989.

74. ABCS Vol. 4, No. 4, Summer 1987.

75. Ludwig, M., "The Little Blaok Book of computer viruses",
American Eagle Publications, Inc., Post Office Box 41401,
Tucson, Arizona 85717, 1991.

76. Defense System Management College, "Software Acquisition
Strategies Caselet", SotaeXaaggt Ft. Belvoir~, VA.,
July 1993, page 4.

7 7.

143

78. Computergram International, Technology News of America
Co., 110 Green St., Rm. 1101, New York, NY., 10012, Feb 21,
1991, No. 1617, page 3.

79. IEEE Network, Vol. 1, No. 5, Nov 1990, page 10.

80. Seybold, Patricia, "Network Monitor," Version 6, No. 6,
Jun 1991, page 24.

81. Computerworld, "Software Distribution Key to Open
Systems," Vol. 27, No. 42, Oct 18, 1993, page 85.

82. Computer Protection Systems, Inc. "LAN Security," 150 N.
Main, Plymouth, Michigan 48170, Vol. X, No. 10, Jan 1993, page
3.

83. Cohen, F., "Computer Viruses - Theory and Experiments,"
Computers and Security, Vol. 6, No. 1, 1987, pages 22-35.

84. Cramer, Myron, and Pratt, Stephen, "Computer Virus
Countermeasures- A New Type of Electronic Warfare," Dfense
o n ,, Oct 1989, pages 75-84.

85. Cramer, M., and Pratt, S., "Computer Virus Countermeasures
- A New Type of Electronic Warfare," Roaue Proarams: Viruses.
Worms. and Trojan Horses, edited by Lance J. Hoffman, Van
Nostrand Reinhol.d, New York, NY., 1990, pages 246-260.

86. GAO, "Virus Highlights Need for Improved Internet
Management," GAO/IMTEC-89-57, June 1989, page 39.

87. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., Englewood Cliffs, NJ., 1989, pages 366-369.

88. Hoffman, P., "VSUMX", Virus Summary List, 333 Bowers Ave,
Suite 130, Santa Clara, CA., Aug 1993, page 10.

29. Tanenbaum, A., "Computer Networks," Prentice-Hall, NJ.,
1981, page 129.

90. Tanenbaum, A., "Computer Networks", Prentice-Hall, NJ.,
1981, page 130.

91. Hoffman, L., "Rogue Programs: Viruses, Worms, and Trojan
Horses," Van Nostrand Reinhold, NY., 1990, page 19.

92. Mayo, J., "Computer Viruses," Windcrest Books, Blue Ridge
Summit, PA., 1989, page 106.

144

93. Ferbrache, D., "A Pathology of Computer Viruses,"
Springer-Verlag London, 1992, pages 110-111.

94. Schneider, B., "Making Sense of Encryption," Infosecurity
News, Vol. 4, No. 2, March/April 1993, page 37.

95. Pozzo, Maria and Gray, Terence, E., "An Approach to
Containing Computer Viruses", Computers and Security, Vol. 6,
1987, page 17.

96. Pfleeger, C., "Security in Computing," Prentice-Hall,
Englewood Cliffs, NJ., 07632, 1989, page 25.

97. Z1kd.

98. Ibid.

99. Parker, S., Encycloedia of Electronics and Computers,
McGraw-Hill Inc., 1988, page 180.

100. U.S. Department of Commerce, "Digital Signature
Standard", Computer Systems Laboratory (CSL) Bulletin,
National Institute of Standards and Technology, January 1993.

101. Feudo, C., "The Computer Virus Desk Reference," Business
One Irwin, Homewood, IL., 60430, 1992, pages 105-107.

102. Hoffman, Lance J., "Computer Viruses: A Plea for Sanity,"
presented at the Invitational Workshop on Computer Viruses,
Oct 1986, New York, N Y., page 1.

103. Pfleeger, C.P., "Security in Computing," Prentice-Hall,
Englewood Cliffs, New Jersey, 1989, pages 462-463.

104. Gardner, P., "Five Risk Assessment Programs," C
and curity, Vol. 8, No. 6, Oct 1989, pages 291-296.

105. Cohen, F., "A Cost Analysis of Virus Defenses," A Short
.urse- on Computer Viruses, ASP Press, PO Box 81270,

Pittsburgh, PA., 1990, pages 155-160.

106. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-TIST-87-04,
March 1987, page 97.

107. Cohen, F., "A Cost Analysis of Virus Defenses," A Short
Course on Computer Viruseq, ASP Press, PO Box 81270,
Pittsburgh, PA., 1990, pages 155-160.

145

108. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

109. Cohen, F., "A Cost Analysis of Typical Computer Viruses
and Defenses", ASP Press, PO Box 81270, Pittsburgh, PA., 1990.

110. Rutledge, L., "A Spatial Encodinq Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

111. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service".

112. Sollins, K., The TFTP Protocol, Network Working Group,
Request for Comments: 783, MIT, June 1981.

113. Tanenbaum, A., "Computer Networks", second edition,
Prentice-Hall Inc., 1988, pages 358, 429-431.

114. Tanenbaum, A., "Computer Networks", second edition,
Prentice-Hall Inc., 1988, pages 358-361.

115. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service".

116. Sollins, K., The TFTP Protocol, Network Working Group,
Request for Comments: 783, MIT, June 1981.

117. Pfleeger, C., "Security in Computing," Prentice-Hall,
Inc., NJ., 1989, page 366.

118. International Organization of Standards, ISO 8473 1988,
page 1.

119. Sollins, K., The TFTP Protocol, Network Working Group,
Request for Comments: 783, MIT, June 1981.

120. Stevens, R., "UNIX Network Programming," Prentice-Hall
Software Series, 1990, page 465.

121. Comer, D., "Internet Working with TCP/IP: Principles,
Protocols, and Architecture," Prentice-Hall Inc., 1988, page
239.

146

122. International Organization of Standards, ISO 8473 1988,
page 14.

123. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service", pages 6, 24.

124. Pickholtz, D., Schilling, D., and Milstein, L., "Theory
of Spread-Spectrum Communications - A Tutorial," GWU-IIST-81-
31, May 1982, pages 855-884.

125. Pickholtz, D., Schilling, D., and Milstein, L., "Theory
of Spread-Spectrum Communications - A Tutorial," GWU-IIST-81-
31, May 1982, pages 855-884.

126. Pickholtz, R., et al, "Spread Spectrum Goes Commercial,"
IEEE Spectrum, Aug 1990, page 40.

127. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data Communications -
Protocol for Providing the Connectionless-Mode Network
Service".

128. Nelson, M., Dr. Dobb's Journal, "File Verification Using
CRC," Vol. 17, No. 5, May 1992, pages 61-68.

129. Dettmann, T., "DOS Programmer's Reference," Que
Corporation, 11711 N. College Ave., Carmel, IN., 46032, 1989,
pages 262-263.

130. Cohen, F., "A Cost Analysis of Virus Defenses," A Short
Course on Computer Viruses, ASP Press, PO Box 81270,
Pittsburgh, PA., 1990, pages 155-160.

131. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

132. International Organization of Standards, ISO 8473 1988,
"Information Processing Systems - Data communications -
Protocol for Providing the Connectionless-Mode Network
Service".

133. Sollins, K., The TFTP Protocol, Network Working Group.
Request for Comments: 783, MIT, June 1981.

147

134. Cohen, F., "A Cost Analysis of Virus Defenses," A Short
Course on Cognuter Viruses, ASP Press, PO Box 81270,
Pittsburgh, PA., 1990, pages 155-160.

135. Rutledge, L., "A Spatial Encoding Mechanism For Network
Security," The George Washington University, GWU-IIST-87-04,
March 1987, page 97.

136. Computerworld, "Enterprising Networks," Oct 11, 1993,
Vol. 27, bo. 41, pages 51-54.

137. Ikid, page 51.

138. I page 54.

139. Evance, P., and Bentley, K., "Computer Viruses Loom as
Future Era Weapons", Defense Journal, February 1994, pages 19-
21.

140. Stevens, R., "UNIX Network Programming", Prentice Hall,
Englewood Cliffs, NJ, 1990, p&ges 171-196.

148

SEOURITY cIIBIFICATION OF THIS PAGE

ApForm oved
REPORT DOCUMENTATION PAGE ClOmaN•o.o 00ow1

Is. REPORT I.JRITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Uni~ana iiied
2a. SECURIVrCL&SSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

"A" distribution for public release;
2b. DECAInCATION I DOWNGRADING SCHEDULE distribution unlimited

4. PERFORIW ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

Defense Systems Management College TR 4-91

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If appicable)

Defense Sys Mgmt College Same as 6a.

6C. ADDRE' (t, rState, en ZIP Cde) 7b. ADDRESS (City, State, and ZIP Code)

9823 Belvoir Rd Ste G38
Ft. Belvoir, VA 22060--5565 Same as 6c.

1.. NAME OFFUNOING/SPONSORING Eb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAIIdhTION (if appl•c€lbe)

8c. ADDRESSMl, State, and ZiP Code) 10. ;OURCE OF FUNDING NUMBERS

PRO43FAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCuSSION NO.

11. TiTLE (•d Secrfy Oawficatin)u

An Abstract Model of Rogue Code Insertion into Radio Frequency Wireless Networks

12. PER5r V. Feudo

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, 4ont•h, Dv) 15. PAGE COUNT
Technical Report I FROM TO

16. SUPPLEUNTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary end identify by bock number)
FIELD GROUP SUB-GROUP

19. ABST (Continue on mversm if necessary and Jdentify by block number)

A dissertaion presented to the faculty of the School of Engineering and Computer
Science, the George Washington University. This research examines the effects of
comuter viruses to the Program Management Office.

20. DISTRIBIAONI AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
]0 UNCLAWIFIED/UNLIMITED 03 SAME AS RPT. 0 DTIC USERS A]gifIet

22a. NAME OF RESPONSIBLE INDIVIDUAL Z2b, TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Sylvia Nance (703) 805.-2376

DD Iorm 1473, JUN 86 Previous editionsam obsolete. SECURITY CLASSIFIATION OF THIS PAGE

